Mostrando postagens com marcador academia fórmula. Mostrar todas as postagens
Mostrando postagens com marcador academia fórmula. Mostrar todas as postagens

quinta-feira, 3 de dezembro de 2015

Oclusão vascular e a importância da fadiga muscular: estudos recentes

Já comentei aqui no blog algumas vezes sobre a importância da fadiga para otimizar os ganhos de força e hipertrofia muscular (clique aqui: 1, 2, 3, 4, 5) Nas últimas repetições, o corpo recruta o máximo de unidades motoras possíveis para executar o movimento (o que chamamos de "princípio do tamanho).



Alguns estudos inclusive não demonstraram diferenças em hipertrofia muscular se o exercício foi executado com cargas maiores ou menores, desde que seja executado até a falha concêntrica. E algumas técnicas têm sido elaboradas para otimizar os resultados do treinamento de força com cargas menores, como a oclusão vascular (clique aqui: 1, 2, 3, 4, 5, 6, 7)
Por exemplo, no recente estudo de Lixandrão e colaboradores (2015), os grupos com oclusão vascular treinaram a 20 e a 40% RM, com 40 ou 80% de oclusão em cada grupo. Em cargas muito baixas (20%RM), a oclusão de 80% influenciou os ganhos de força e massa muscular. Porém, a 40% RM, não houve diferenças entre 40 e 80% de oclusão. O grupo que treinou de maneira tradicional (80% RM) apresentou maiores ganhos de força, mas não houve diferenças nos ganhos de massa magra.
Noutro estudo recente, de Farup e colaboradores (2015), utilizaram 40% RM num braço com oclusão e noutro braço sem oclusão. As séries foram realizadas até a fadiga total. Nas duas condições, o aumento de massa muscular foi semelhante, sem diferenças no conteúdo de água. Ou seja, até em cargas mais baixas, a fadiga muscular influencia mais que a oclusão vascular.
Então posso treinar somente com cargas mais leves? Caso não seja recomendação médica, não. E quem nunca treinou intensamente com cargas menores não sabe o quanto arde e provoca acidose ir até a fadiga. Deve-se periodizar o treino. E, para isso, chame um profissional.


Referências:

Farup J, de Paoli F, Bjerg K, Riis S, Ringgard S, Vissing K. Blood flow restricted and traditional resistance training performed to fatigue produce equal muscle hypertrophy. Scand J Med Sci Sports. 2015 Dec;25(6):754-63. doi: 10.1111/sms.12396. Epub 2015 Jan 21.

Lixandrão M, Ugrinowitsch C, Laurentino G, Libardi CA, Aihara AY, Cardoso FN, Tricoli V, Roschel H. Effects of exercise intensity and occlusion pressure after 12 weeks of resistance training with blood-flow restriction. Eur J Appl Physiol. 2015 Dec;115(12):2471-80. doi: 10.1007/s00421-015-3253-2. Epub 2015 Sep 1.

terça-feira, 1 de dezembro de 2015

Crossfit: evidências, segurança e resultados.


Percebe-se hoje uma crescente febre no mercado fitness pelo que chama-se Crossfit. Para quem não conhece ainda, trata-se de um treinamento não tradicional, que não possui intenção de trabalhar de forma específica. Seu criador, o treinador Greg Glassman, fundamentou a metodologia em três pilares: variação, intensidade e funcionalidade. Além disso, há uma rotina de treino diversificada. Ou seja, o indivíduo vai treinar sem saber como será a sessão de treino, o chamado "Work of day" (WOD). 
Deve-se lembrar que Greg baseou sua metodologia empiricamente, através de suas observações na prática. Isso remete a sua adolescência, onde tinha alguns conflitos com o pai (um pesquisador), com o qual qualquer discussão formal tornava um debate acadêmico.
Pelo empirismo, questiona-se a segurança. Um recente estudo reportou a incidência de 20% de lesões entre os praticantes de Crossfit (Weisenthal, 2014). As lesões se concentraram nos ombros, lombar e joelhos. Hak e colaboradores observaram uma incidência de 3,1 lesões a cada 1000 horas de treino. Para efeitos de comparação, no estudo de Siewe e colaboradores (2014), o índice de lesões entre fisiculturistas de elite (não recreacionais, como a maioria das pessoas) foi de 0,24 a cada 1000 horas de treino.
Partridge e colaboradores observaram um ambiente motivacional, com diferença entre os gêneros. Os homens se motivavam pelo treinamento através da competição; as mulheres, pela auto superação, de irem melhores a cada treino. Após 6 meses de treinamento, independente do gênero, ambos se motivavam pela questão competitiva. Obviamente, isso se torna um fator importante motivacional. Porém, a preocupação seria se essa motivação competitiva não poderia afetar a técnica de execução dos exercícios.
Com relação ao estresse oxidativo, Kliszczewicz e colaboradores (2015) não demonstraram diferenças entre o Crossfit e um treino aeróbico tradicional em esteira.
Houve também um caso famoso descrito na literatura de rabdomiólise (alta concentração sanguínea de creatina quinase, sinalizando excesso de estresse muscular; podendo levar a complicações metabólicas severas, incluindo lesão renal aguda) num praticante de crossfit (Hadeed e colaboradores, 2011). O paciente tinha 33 anos e deu entrada no hospital após uma sessão de treino Crossfit. O mesmo já vinha apresentando falta de ar, fraqueza muscular e distúrbios de sono. Os valores de creatina quinase ficaram em 26000 IU/L, enquanto os valores normais ficam abaixo de 200 IU/L. Em seis dias, o paciente teve alta do hospital e retornou aos treinos 4 meses sob orientação profissional.

Quanto à eficácia? Ainda há dados escassos na literatura sobre a eficácia. No estudo de Smith e colaboradores (2013), houve aumento no consumo máximo de oxigênio e perda de gordura. Uma das limitações desse estudo foi o fato da amostra ter sido submetida à dieta do Paleolítico sem algum grupo controle, dificultando mensurar os efeitos de cada uma das variáveis separadamente.  
Eather e colaboradores (2015) avaliaram adolescentes e observaram perda da circunferência abdominal, diminuição do índice de massa corporal, melhora da capacidade cardiorrespiratória e muscular. Como as medidas de aptidão física nesse estudo foram a partir de testes indiretos e não houve mensuração da composição corporal, ainda faltam estudos que avaliem essas variáveis através de métodos padrão-ouro e com grupos controle, a fim de analisarmos mais precisamente a eficácia da metodologia Crossfit.


Minha maior crítica à metologia refere-se ao fato de não haver periodização, controle, planejamento e variação de cargas, tempo sob tensão. O fato de cada sessão de treino ser diferente, é ótimo e constitui-se num fator motivacional. Porém, metabolicamente falando, não há um planejamento. Além de se trabalhar intensamente o corpo inteiro em cada sessão, fica a dúvida se há recuperação muscular eficiente quando se realiza a sessão seguinte de treinamento, podendo levar a um quadro de sobretreinamento (overtraining - clique para saber mais: 1, 2, 3) e possíveis lesões (em casos mais graves, rabdomiólise). Como treinador, sou a favor e utilizo diversos movimentos que se utilizam no Crossfit. Porém, nem todas pessoas possuem técnica e estrutura corporal para realizar alguns movimentos complexos até a fadiga total, não tendo realizado um treinamento de base. Em alguns casos, a técnica pode ser prejudicada. 
Estou dizendo que o Crossfit é ruim? Não, pelo contrário. Também utilizo algumas bases que ele também utiliza. Pela motivação, algumas pessoas passam a realmente treinar intensamente e, claro, passam a obter o resultado que não conseguiam com a musculação, por exemplo (mas, se treinassem tão intensamente na musculação, poderiam ter o mesmo resultado). Minhas críticas remetem à questão de periodizar o treino e à recuperação muscular, justamente os fatores que podem acentuar o índice de lesões. Como toda metodologia, ainda mais feita empiricamente, está passível de críticas e ajustes.

Referências:

Eather N, Morgan PJ, Lubans DR. Improving health-related fitness in adolescents: the CrossFit Teens™ randomised controlled trial. J Sports Sci. 2015 May 14:1-15.

Hadeed, M.J., Kuehl, K.S., Elliot, D.L., Sleigh, A. Exertional Rhabdomyolysis after Crossfit exercise Program. Medicine and Science in Sports and exercise, 2011 43(5):224-225.

Hak, P.T., Hodzovic, E., Hickey, B. The nature and prevalence of injury during Crossfit training. Journal of strenght and conditioning research. 2013.

Kliszczewicz B, Quindry CJ, Blessing LD, Oliver DG, Esco RM, Taylor JK. Acute Exercise and Oxidative Stress: CrossFit(™) vs. Treadmill Bout. J Hum Kinet. 2015 Oct 14;47:81-90.

Partridge, Julie A., Bobbi A. Knapp, Brittany D. Massengale. An investigation of motivational variabçes in Crossfit and weight trained individuals. Medicine and science in sports and exercise, 45(5):530.

Siewe J, Marx G, Knöll P, Eysel P, Zarghooni K, Graf M, Herren C, Sobottke R, Michael J. Injury Rate and Patterns Among CrossFit Athletes. Orthop J Sports Med. 2014 Apr 25;2(4):232.

Smith, Michael M., et al. Crossfit-based high intensity power training improves maximal aerobic fitness and body composition. The Journal of Strength and Conditioning research, 2013 27(11):3159-3172.

Weisenthal BM, Beck C.A., Maloney, DeHaven KE, Giordano BD. Injuries and overuse syndromes in competitive and elite bodybuilding. Int J Sports Med. 2014 Oct;35(11):943-8. doi: 10.1055/s-0034-1367049. Epub 2014 Jun 2.


domingo, 29 de novembro de 2015

Circuito em alta intensidade

Circuito em alta intensidade até a falha em todos os exercícios.
Além de trabalhar força e resistência anaeróbica, consegue-se melhorar a capacidade cardiovascular.


Levantamento terra (140 kg), desenvolvimento de pé frontal (40 Kg), Desenvolvimento frontal com anilha (20 Kg) e elevação lateral com halteres (12 kg).

quinta-feira, 26 de novembro de 2015

Osteoporose e treinamento de força



Há algum tempo, acreditava-se que, para a melhora da densidade mineral óssea, as melhores atividades físicas seriam caminhadas ou alguma atividade com impacto. Nos anos 80 e 90, começou-se a observar que exercícios com pesos beneficiariam a saúde do sistema ósseo não somente pela deformação óssea pela aplicação da carga em si, mas músculos mais fortes aplicam força de tensão maiores no tecido ósseo através dos tendões. Isso estimularia a atividade dos osteoblastos e a deposição de cálcio nos ossos. Sabe-se também que melhores resultados na densidade mineral óssea são obtidos com cargas mais altas (Vincent e colaboradores, 2002). Mas a aplicação de altas cargas seria seguro em mulheres idosas com densidade mineral óssea baixa?

Um estudo recentíssimo, saindo na edição de dezembro da Osteoporos (Watson e colaboradores, 2015) demonstrou que sim. O treinamento orientado com cargas mais altas, além de seguro, é mais eficiente na melhora da densidade mineral óssea após 8 meses de treinamento. A aderência ao treinamento foi de 87% e não houve registro de lesões decorrentes do treinamento.

Referências

Vincent KR, Braith RW. Resistance training and bone turnover in elderly men and women. Med Sci Sports Exerc 2002;34:17-23.

Watson SL, Weeks BK, Weis L, Horan SA, Beck. Heavy resistance training is safe and improves bone, function, and stature in postmenopausal women with low to very low bone mass: novel early findings from the LIFTMOR trial. Osteoporos Int. 2015 Dec;26(12):2889-94. 

terça-feira, 24 de novembro de 2015

Treino com carga tensional - vídeo

Com o envelhecimento. apresentamos perda da massa, força e função musculares (sarcopenia). Esse processo acontece muito mais cedo do que você imagina, sobretudo em indivíduos sedentários.
Por isso, na periodização do treino de força, é importante darmos espaço para estímulos tensionais.


Aqui, um dos primeiros textos do blog onde falo sobre função muscular.

quinta-feira, 12 de novembro de 2015

A utilização e reposição de glicose pelo organismo


Em atividades intensas, entre 20 segundos e 5 minutos de esforço máximo (uma intensidade em que você não consiga manter por mais de 20 segundos ou 5 minutos, por exemplo), utilizamos a glicose de forma anaeróbia como fonte de energia predominante. Então ocorre o acúmulo de lactato, os íons hidrogênio acidificam o meio biológico, entramos em fadiga (sentindo uma certa "ardência" no tecido muscular) e inciamos uma hiperventilação. Essa glicose provém principalmente do glicogênio muscular e, conforme as reservas musculares forem depletadas, há o aumento da utilização da glicose sanguínea, captada pelo tecido muscular.

No pós-exercício, a captação de glicose pelo músculo não é para a utilização como fonte de energia, mas para a reposição do glicogênio muscular. Aliás, no simples processo de estocar glicose no músculo como glicogênio, há também gasto de energia (por isso, mesmo ingerindo glicose pós-exercício, esse é um dos inúmeros motivos para o gasto energético mais alto após exercícios de alta intensidade). Em exercícios com intensidade em que a glicose é utilizada de forma aeróbica (entre 5 e 20 minutos máximos), ela advém principalmente da corrente sanguínea, captadas pelas fibras oxidativas. 

A repleção do glicogênio muscular é dividida em duas fases:

Primeira fase
Corresponde aos 45 a 60 minutos pós-exercício. Tanto a permeabilidade da célula muscular quanto a atividade da enzima glicogênio sintetase (enzima que atua na ressíntese do glicogênio muscular) encontram-se elevadas, assim a ressíntese do glicogênio ocorre rapidamente (12 a 30 mmol/L/h). Essa fase deve-se iniciar logo após o término do exercício, pelos seguintes motivos:
- fluxo sanguíneo aumentado, facilitando a chegada de nutrientes para a célula muscular;
- os receptores celulares de insulina estão mais sensíveis, promovendo maior influxo de glicose e síntese de glicogênio;
- o número de transportadores de glicose que se ligam à insulina no tecido muscular (Glut4) permanecem translocados para a membrana por 4 horas após o término do exercício, promovendo maior captação de glicose  (e esse é um dos maiores benefícios do exercício para diabéticos tipo II);
- a enzima glicogênio sintetase (que atua na síntese de glicogênio) encontra-se com sua atividade aumentada por 2 horas após o término do exercício.
Nessa fase, o índice glicêmico dos alimentos ingeridos pode ser um pouco mais alto. Como nessa fase, a captação de glicose pelo tecido muscular é alta, ele é capaz de utilizar uma quantidade maior de glicose num espaço de tempo menor.


Segunda Fase
A captação de glicose é bem mais lenta (aproximadamente 3 mmol/L/h), é dependente de insulina e prossegue até que a concentração de glicogênio muscular esteja próxima dos valores normais (geralmente, dentro de 24 horas). Essa fase, portanto, apresenta um aumento da ação da insulina. Por isso, muito cuidado com o índice glicêmico dos carboidratos nessa fase. Uma vez que uma grande quantidade de carboidratos entrando na corrente sanguínea num curto espaço de tempo (alimentos com índice glicêmico alto) pode ser maior que capacidade de captação pelo tecido muscular, esse excesso, é armazenado em forma de gordura (a insulina estimula a síntese de glicogênio muscular, mas também estimula a lipogênese - síntese de triglicerídeos). 

De qualquer forma, consulte seu nutricionista e/ou nutrólogo. Somente eles serão capazes de instruir qual a quantidade exata e o índice glicêmico dos alimentos apropriados para seu objetivo, seja aumento de peso e massa muscular, seja emagrecimento. Entenderam a importância de consultar os profissionais, cada um em sua área para atuação em conjunto? Você pode ter como objetivo emagrecer, fazer um treino excelente, mas se ingerir algum alimento com determinado índice glicêmico na hora errada, pode atrapalhar seu objetivo. Ou até pode ingerir um alimento com índice glicêmico apropriado, mas com a carga glicêmica alta (que mede não só a velocidade de digestão em glicose, mas a quantidade de carboidratos em cada alimento) pode igualmente atrapalhar seus objetivos.

Referência

Filho, Durval RIbas; Suen, Vivian Marques Miguel. Tratato de Nutrologia. Editora Manole, 2013.

domingo, 8 de novembro de 2015

Crossover - vídeo

Vejo muita gente realizando esse exercício estendendo os cotovelos. Isso você pode chamar de supino do cabo ou outra coisa parecida com isso. Crossover e crucifixo são exercícios para isolar o máximo possível o peitoral, sem ação do tríceps braquial. Pode-se flexionar um pouco os cotovelos, mas os mantenham na mesma posição durante a execução do movimento.



sexta-feira, 6 de novembro de 2015

Aeróbico em jejum funciona?

Um dos temas mais controversos do mundo fitness para otimizar perda de gordura trata-se do exercício aeróbico em jejum. Seja para estética quanto para melhorar dos parâmetros de saúde, há os que defendem e os que condenam a prática.
Como já tratei aqui no blog (clique aqui), o que vai definir o substrato preferencial utilizado durante o exercício é sua intensidade. Mas será que um estado onde houvesse menos glicogênio muscular e hepático disponível, poderia otimizar a utilização de gordura como fonte de energia?

Primeiramente, gostaria de deixar alguns conceitos destacados para reutilizá-los depois. Vou procurar explicar de maneira clara para os leitores que não são da área: 
- Para o organismo utilizar gordura como fonte de energia, especificamente no Ciclo de Krebs, há a necessidade de um composto, chamado oxalacetato. Ele é sintetizado principalmente a partir de glicose. Ou seja, para ativar o ciclo de Krebs (e a "queima" de gordura), há a necessidade de glicose.
- Em situações de jejum e baixa disponibilidade de glicose (seja em forma de glicogênio hepático ou muscular), o organismo sintetiza glicose a partir de glicerol, lactato e aminoácidos (por isso há o medo de perda de massa muscular com essa conduta, visto que pode-se degradar proteína muscular em aminoácidos e convertê-los em glicose). Esse processo chama-se gliconeogênese. 
- O estado nutricional também é um fator importante para a oxidação de substratos. A ingestão de carboidratos, por exemplo, inibe a oxidação de gorduras. Alta de insulina inibe a lipólise e reduz a concentração sanguínea de ácidos graxos (Van Loon e colaboradores, 2001). Esse efeito inibitório pode durar pelo menos 6 horas (De Bock e colaboradores, 2005; Achten & Jeukendrup, 2004).
- Segundo Poian & Carvalho (2002), a glicose na corrente sanguínea (glicemia) é mantida às custas dos estoques de glicogênio hepático, reduzindo seus níveis após as 12 primeiras horas de jejum. 

A maioria dos protocolos de exercício aeróbico em jejum são em intensidades baixas/moderadas ou baixíssimas, com o intuito de utilizar predominantemente gordura como fonte de energia. Em intensidades baixíssimas, o gasto calórico seria muito baixo. Por exemplo, a 25% da capacidade máxima oxidativa (VO2máx), quase que a totalidade da energia provém dos ácidos graxos, enquanto a 65%, esse percentual baixa para 50%. Entretanto, a quantidade total de gordura oxidada é maior a 65% VO2máx., visto que acresce 50% o total de energia gasta (Ballor e colaboradores, 1990). 
Por isso, a maioria dos estudos focam numa intensidade entre 50%-75% VO2máx. Por exemplo, De Bock e colaboradores (2005) demonstraram que o exercício em cicloergômetro após um jejum noturno de 11 horas, aumentou a degradação de triacilglicerol intramuscular (depósito de gordura muscular) entre 50% e 75% VO2máx. Porém, devido à grande utilização de ácidos graxos como fonte de energia, há aumento significativo na produção de corpos cetônicos, causando acidose sanguínea e queda no rendimento (Champe e colaboradores, 1996).


Dohm e colaboradores (1986) compararam o exercício a 70% VO2máx após 23 horas de jejum afim de estudar o comportamento da glicemia sanguínea. Não houve diferença significativa nos níveis de glicose durante o exercício entre o grupo em jejum e o grupo alimentado (devido à gliconeogênese). A mobilização e utilização de gordura como fonte de energia foi maior nos indivíduos em jejum. 
Analisando o gasto calórico pós-exercício (item importante no processo de emagrecimento), Paoli e colaboradores (2011) demonstraram que, a 65% VO2máx durante 35 minutos, o grupo em jejum oxidou menos gordura nas 24 horas subsequentes ao exercício com relação ao grupo alimentado. Em intensidades mais altas, como no protcolo HIIT, Gillen e colaboradores (2013) verificaram que o jejum não altera o padrão de oxidação de gordura, como era de se esperar (a intensidade define o substrato a ser utilizado).
Há um estudo muito famoso sobre o tema, realizado com judocas de elite sob influência do jejum no Ramadã. Prefiro não me focar nesse estudo porque o grupo estudado é exceção, não regra. Ou seja, são atletas (logo, sua oxidação de gordura é mais eficiente) e devem possuir algum tipo de adaptação do organismo ao jejum prolongado (realizam o jejum prolongado uma vez por ano). Esses dois fatores juntos faz da amostra um grupo distinto da grande maioria.
E, se por um lado, o jejum provoca aumento na liberação de hormônios lipolíticos (adrenalina, cortisol e hormônio do crescimento) (Jensen & Landau, 2001); vale ressaltar o estudo de Uttler e colaboradores (1999), onde 12 horas de jejum (e exercício a 75% VO2máx. por 2 horas e meia) provocou aumentos no cortisol (hormônio catabólico) duas vezes mais que o grupo que ingeriu carboidratos antes do protocolo. E o cortisol ainda se manteve 80% elevado 90 minutos após o fim da atividade. Embora tenha provocado menores níveis de insulina durante o exercício (e maior oxidação de gordura), 
Importante lembrar que em estado de repouso, o organismo consegue lidar com o estado de jejum. Com o aumento da demanda metabólica, o organismo pode se proteger induzindo o indivíduo a desmaios, além da possibilidade de ocorrer danos neurais (Auer e colaboradores, 1993). Além disso, a performance pode sofrer decréscimo e a tendência a fadiga aumentar (Maughan, 2010). 

O que observamos em diversos autores são os extremos, aqueles que defendem o aeróbico em jejum, mas sempre com ressalvas e os que condenam. Como opinião própria, não o condeno totalmente, mas deve ser prescrito com muitíssima cautela.
- nem todas as pessoas conseguem realizar atividade física em jejum, ficam com dor de cabeça, mal humor, sem paciência e podem até desmaiar. Outras conseguem realizar;
- os estudos focam ou numa intensidade muito baixa, como 25 a 30% VO2máx, ou após o primeiro limiar (aeróbico), em torno de 65-70% VO2máx. No estudo de Bock e colaboradores (2005), por exemplo, a 50% VO2máx., a oxidação de ácidos graxos foi maior no grupo em jejum. Então, a intensidade não pode ser moderada-alta, mas também não pode ser quase tão baixa quanto em repouso.
- os autores utilizam um jejum por demasia prolongado, um pouco fora da realidade da maioria das pessoas. Uma pessoa que dorme 6, 8 horas, não vai fazer seu exercício em jejum de manhã com um jejum de 11 ou 24 horas. Lembram do que citei logo no início do texto? A ação inibitória da insulina sobre a oxidação de gorduras dura em torno de 6 horas e o fígado consegue manter a glicose estável através de seus estoques de glicogênio por volta de 12 horas de jejum. Então, um trabalho em conjunto deve ser elaborado entre o educador físico e nutricionista/nutrólogo nessa ocasião.
- algumas pessoas advogam a ingestão de BCAAs (ou somente leucina) para evitar o catabolismo muscular, além de algum outro suplemento. Mas daí não estamos falando de aeróbico em jejum, mas aeróbico com baixo carboidrato (low carb).
- Muitíssimo importante é o manejo nutricional após o exercício. Verificamos que o cortisol aumenta bastante durante e continua aumentado após o exercício em jejum. Há manejos nutricionais para lidar com essa situação. Lembre de se manter sempre hidratado, beba muita água. 
- Tão importante quanto a intensidade, é o tempo do exercício. Não pode ser uma atividade muito longa, nem pode ser realizada por semanas, afim de evitar degradação proteica em demasia. 
Dados alguns cuidados, principalmente num trabalho conjunto entre o educador físico e quem monitora a dieta do cliente, o aeróbico em jejum não precisa ser totalmente descartado. Pode ser uma via interessante em momentos onde a perda de gordura se estabilizou, como uma conduta "de choque". Mas, repito, não é o metabolismo de todos que se adaptam. Deve ser prescrito e acompanhado por profissionais (você pode se prejudicar seriamente saindo por aí se auto-prescrevendo), verificando periodicamente a composição corporal.


Referências

ACHTEN Juul; JEUKENDRUP, ASKER E. Optimizing Fat Oxidation Through Exercise and Diet. Sport and Exercise Sciences, University of Birmingham. Nutrition 2004;20:716 –727. ©Elsevier Inc. 2004.

AUER RN, SIESJO BK. Hypoglycaemia: brain neurochemistry and neuropathology. Baillieres Clin Endocrinol Metab 1993 Jul;7(3):611-625

BALLOR, D.L., J.P.MCCARTHY and E.J.WITERDINK (1990). Exercise intensity does not affect the composition of diet and exercise-induced body mass loss. Am. J. Clin. Nutr. 51:142-146.

CHAMPE, P.C.; HARVEY, R.A. Bioquímica ilusrada. 2ª Edição, Porto Alegre, Artes Médicas, 1996.

DE BOCK, K.; RICHTER, E.A.; RUSSELL, A.P.; EIJNDE, B.O.; DERAVE, W.; RAMAEKERS, M.; KONINCKX, E.; LÉGER, B.; VERHAEGHE, J.; HESPEL, P. Exercise in the fasted state facilitates fibre type-specific intramyocellular lipid breakdown and stimulates glycogen resynthesis in humans. Journal of Physiology, v. 564, n. 2, p. 649-660, 2005.

DOHM GL, BEEKER RT, ISRAEL RG, TAPSCOTT EB. Metabolic responses to exercise after fasting. J Appl Physiol. 1986 Oct;61(4):1363-8

Gillen JB1, Percival ME, Ludzki A, Tarnopolsky MA, Gibala MJ (2013). Interval training in the fed or fasted state improves body composition and muscle oxidative capacity in overweight women. Obesity (Silver Spring). 21(11):2249-55


JENSEN, M.D.; EKBERG, K.; LANDAU, B.R. Lipid metabolism during fasting. American Journal of Physiology (Endocrinology Metabolism), v. 281; p. 789-E793, 2001.

MAUGHAN RJ. Fasting and sport: an introduction. Br J Sports Med. 2010 Jun;44(7):473-5. Epub 2010 May 10. PubMed PMID: 20460260.

MAUGHAN RJ. The effects of fasting on metabolism and performance. Br J Sports Med. 2010 Jun;44(7):490-4. Epub 2010 - b May 19. Review. PubMed PMID: 20484315

PAOLI A, MARCOLIN G., ZONIN F., NERI M., Sivieri A., PACELLI Q.F. Exercising fasting or fed to enhance fat loss? Influence of food intake on respiratory ratio and excess postexercise oxygen consuption after a bout of endurance training. Int J Sport Nutr Exerc Metab. 21(1):48-54 (2011).

POIAN, A.T.; CARVALHO-ALVE, P.C. Hormônios e Metabolismo: integração e Correlações clínicas. 1ª Edição, São Paulo, Atheneu, 2002.

UTTER AC, KANG J, NIEMAN DC, WILLIAMS F, ROBERTSON RJ, HENSON DA, DAVIS JM, BUTTERWORTH DE. Effect of carbohydrate ingestion and hormonal responses on ratings of perceived exertion during prolonged cycling and running. Eur J Appl Physiol Occup Physiol. 1999 Jul;80(2):92-9.

VAN LOON, L.J.C.; GREENHAFF, P.L.; CONSTANTIN-TEODOSIU, D.; SARIS, W.H.M.; WAGENMAKERS, A.J.M. The effects of increasing exercise intensity on muscle fuel utilisation in humans. Journal of Physiology, v. 536, n. 1, p. 295-304,
2001.

quinta-feira, 5 de novembro de 2015

Twiste ou rotação para músculos abdominais


Mais um exercício com grande potencial lesionador que vejo em inúmeras academias. E chega a doer na minha coluna quando vejo alguém fazendo.
Nossa coluna possui estrutura para suportar força de torção, desde que toda a musculatura sustente o movimento. Sem dúvidas. Porém, tal máquina de tortura medieval (figura 1) impõe três movimentos simultâneos: flexão, inclinação e rotação. Já isso por si só formava o quadro da dor com sua medula passando por sua coluna (figura 2). Agora adicione uma coluna de pesos.
O que devo fazer?

Realize o trabalho sem rotação, com uma força antirrotacional. E nem é necessário todo esse maquinário, podem dispensar esse aparelho. O estudo de Behm e colaboradores (2005), demonstrou que serrote (figura 3) e supino unilateral (figura 4) ativam os músculos estabilizadores da coluna ou "core", sem a necessidade de aparelhos adicionais. O serrote produziu uma maior ativação nos músculos estabilizadores posteriores e o supino unilateral, em todos os músculos estabilizadores.


Referência

Behm DG, Leonard AM, Young WB, Bonsey WA, MacKinnon SN. Trunk muscle electromyographic activity with unstable and unilateral exercises.  J Strength Cond Res. 2005 Feb;19(1):193-201.

quarta-feira, 28 de outubro de 2015

Intervenções para otimizar hipertrofia muscular - Parte 06 - Programas e variáveis de treinamento

Antes de começar a última parte da resenha sobre esse artigo, confesso que me orgulhei do meu trabalho ao ler essa parte. Porque, como há anos venho falado do treinamento de alta intensidade como o mais eficiente para perda de gordura, mais uma vez, através da pesquisa e atenção no que há de novo surgindo na literatura científica (como os links que seguem mostram, observem as datas das publicações), consigo antecipar o que se fará num futuro próximo. Como eu sempre digo, livros são importantes, mas demoram para serem feitos e publicados; os artigos temos acesso a eles assim que são publicados. Venho falado há tempos sobre tempo de tensão (e não apenas número de repetições das séries) e fadiga muscular como um dos norteadores da prescrição de treinamento. Algumas pessoas estranham me ver cronometrando as séries enquanto treino e enquanto dou aula. Mas quem disse que precisamos ser iguais à maioria para fazer algo bom?

Leia também: 



Robert W. Morton, Chris McGlory and Stuart M. Phillips. (2015). Nutritional interventions to augment resistance training-induced skeletal muscle hypertrophy. Frontiers in Physiology. 6:245

Diferentes adaptações musculo-esqueléticas são provocadas pelo treino de força (vulgo musculação) quando comparado ao exercício aeróbico. 
Manipulando diferentes variáveis no treino de força, pode-se influenciar as respostas anabólicas agudas e crônicas. Por exemplo, indivíduos jovens treinados receberam 20 g de whey protein pós-treino, um grupo treinou com um tempo sob tensão maior (12 segundos por repetição) e outro com um tempo sob tensão menor (2 segundos por repetição). O grupo que treinou com maior tempo sob tensão apresentou maior taxa de síntese protéica pós-exercício (Burd e colaboradores, 2012). Espeficamente nesse estudo, os autores encontraram maior aumento na síntese proteica sarcoplasmática (0 a 6 horas pós-treino), mitocondrial (0-6 e 24-30 horas) e miofibrilar (24-30 horas) no grupo com maior tempo sob tensão. Vale ressaltar que ambos os grupos utilizaram a mesma carga relativa. A análise eletromiográfica (atividade elétrica do músculo) indicou que o grupo com maior tempo sob tensão apresentou maior atividade muscular e presumivelmente maior fatiga muscular. Os autores especularam que a maior resposta na síntese proteica no grupo com maior tempo sob tensão seja resultado do maior recrutamento de unidades motoras, correlacionado às microlesões musculares (Proske & Morgan, 2001).


Interessante que noutro estudo (Burd e colaboradores, 2010), atletas recreacionais que realizaram extensão de joelhos a 30 ou 90% de uma repetição máxima (1 RM) até a falha concêntrica apresentaram a mesma taxa de síntese proteica pós-exercício. Após 24 horas, a síntese continuou aumentada no grupo de 30% RM. Obviamente, o grupo de 30% RM realizou mais repetições e conseguiu um tempo sob tensão maior nas séries.
Outro estudo (Mitchell e colaboradores, 2012) investigaram o mesmo princípio por 10 semanas de treino em indivíduos saudáveis, mas não treinados. Apesar do tempo sob tensão não ter sido mensurado, verificou-se que, independente da carga utilizada, realizar as séries até a falha concêntrica resulta em hipertrofia muscular. A fadiga parece ser um fator importante para estimular a hipertrofia muscular, podendo-se manipular o tempo sob tensão e a carga utilizada.
Em contraste com as recomendações do American College of Sports Medicine (2009), os autores propõem uma importante variável a se considerar para otimizar a síntese proteica e a hipertrofia muscular, realizar as séries até a fadiga muscular, independente da carga utilizada.
A falha concêntrica, particularmente quando se utiliza cargas menores, frequentemene ocorre  sob intensa fadiga e ativação de unidades motoras. Essa ativação refere-se tanto ao tamanho quanto a quantidade de unidades motoras recrutadas. O termo "fadiga muscular" é frequentemente mal interpretado. Fadiga é a inabilidade de produzir uma força máxima; assim, fadiga é a inabilidade de recrutar unidades motoras para gerar a força máxima requerida (Dorfman e colaboradores, 1990). A fadiga muscular é alcançada pela ativação e exaustão de todo quadro de unidades motoras (e assim, todos tipos de fibras), requerindo um alto grau de esforço. Os autores propõem a manipulação de diversas variáveis do treinamento de força para estimular a hipertrofia, não simplesmente realizar as séries até a fadiga muscular.
 Tradicionalmente, cargas maiores (70-100% RM) são recomendadas para estimular a hipertrofia muscular (American College of Sports Medicine, 2009), por aumentar a carga mecânica e o recrutamento de fibras. Contudo, com a fadiga das unidades motoras, outras são recrutadas para manter o nível de força requerido (abro um parênteses aqui para lembrar que isso se chama princípio do recrutamento de unidades motoras). Por isso, pelo menos em parte, a eletromiografia mostra maior ativação muscular quando se alcança a fadiga muscular (Dorfman e colaboradores, 1990) e similar hipertrofia é verificada com cargas externas variáveis (Schoenfeld e colaboradores, 2014). Embora cargas menores podem inicialmente não recrutar unidades motoras maiores (que inervam fibras musculares rápidas) como cargas altas, a fadiga muscular de unidades motoras menores (que inervam fibras musculares lentas) faz com que unidades motoras maiores sejam ativadas. Então, se as unidades motoras em ambos os casos são ativadas, é razoável que adaptações de hipertrofia muscular similares ocorram (Schoenfeld e colaboradores, 2014).
É ingênua a prescrição somente de cargas moderadas a altas para induzir hipertrofia muscular, como faz o American College of Sports Medicine (2009). Por isso, acredito que num futuro próximo, a idéia de "zonas de hipertrofia", "zonas de resistência muscular"  não vão ser mais as bases para a prescrição de treinamento. Pelo contrário, se tem uma infinidade de variáveis para estimular hipertrofia muscular e planejar uma periodização. Vamos levar em conta a fadiga muscular (para otimizar os resultados, não estou tratando do indivíduo que deseja treinar sem maiores pretensões) e o tempo sob tensão (deixando um pouco de lado os "números mágicos" de 8, 10, 12 repetições, como se célula muscular soubesse contar).
Assim como há alguns anos eu insistia no treino de alta intensidade para perda de gordura (e hoje o HIT virou moda), mais uma vez insisto que o tempo sob tensão nas séries deve ser levado em conta e, não necessariamente a carga externa seja o fator mais importante para hipertrofia muscular, mas a fadiga muscular.

Referências

American College of Sports Medicine. (2009). Progression models in resistance training for healthy adults. Med. Sci. Sports Exerc. 41, 687–708. doi:10.1249/MSS.0b013e3181915670

Burd, N. A., Andrews, R. J., West, D. W. D., Little, J. P., Cochran, A. J. R., Hector, A.J., et al. (2012). Muscle time under tension during resistance exercise stimulates differential muscle protein sub-fractional synthetic responses in men. J. Physiol. 590, 351–362. doi: 10.1113/jphysiol.2011.221200

Dorfman, L. J., Howard, J. E., and McGill, K. C. (1990). Triphasic behavioralresponse of motor units to submaximal fatiguing exercise. Muscle Nerve 13,621–628. doi: 10.1002/mus.880130711

Burd, N. A., West, D. W. D., Moore, D. R., Atherton, P. J., Staples, A. W., Prior, T., et al. (2011). Enhanced amino acid sensitivity of myofibrillar protein synthesis persists for up to 24 h after resistance exercise in young men. J. Nutr. 141, 568–573. doi: 10.3945/jn.110.135038

Burd, N. A., West, D. W. D., Staples, A. W., Atherton, P. J., Baker, J. M., Moore, D. R., et al. (2010). Low-load high volume resistance exercise stimulates muscle protein synthesis more than high-load low volume resistance exercise in young men. PLoS ONE 5:e12033. doi: 10.1371/journal.pone.0012033

Mitchell, C. J., Churchward-venne, T. A., West, D. W. D., Burd, A., Breen, L., Baker, S. K., et al. (2012). Resistance exercise load does not determine trainingmediated hypertrophic gains in young men. J. Apply Physiol. 113, 71–77. doi: 10.1152/japplphysiol.00307.2012

Proske, U., and Morgan, D. L. (2001). Muscle damage from eccentric exercise: mechanism, mechanical signs, adaptation and clinical applications. J. Physiol. 537, 333–345. doi: 10.1111/j.1469-7793.2001.00333.x

Schoenfeld, B. J., Wilson, J. M., Lowery, R. P., and Krieger, J. W. (2014). Muscular adaptations in low- versus high-load resistance training: a meta-analysis. Eur. J. Sport Sci. doi: 10.1080/17461391.2014.989922. [Epub ahead of print].

segunda-feira, 26 de outubro de 2015

Extensão no solo (extensão lombar)


Extensão no solo (extensão lombar) é um exercício que vejo muitas pessoas realizarem na academia e nos parques, com o objetivo de fortalecer os músculos eretores da coluna (e, de fato, ele cumpre seu papel). Embora alguns insistam em realizar exercícios físicos por conta própria e pior, alguns profissionais não prestam atenção em alguns detalhes, vamos lá.
Há uma lenda universal dos 90 graus, onde para tudo a limitação do movimento é em 90 graus. Porém, esquecem de algo que, raras exceções, não deve ser feito: hiperextensão.



> No caso específico do exercício em questão, há uma compressão discal significativa na região lombar (por volta de L4-5) ao se realizar hiperextensão.
> A hiperextensão aumenta a carga nas facetas articulares, comprimindo o ligamento interspinhoso.


Observem a anatomia de uma vértebra (as facetas e o ligamento interespinhoso) e o que acontece durante a hiperextensão

> Caso haja hérnia de disco, dependendo de sua localização e em quaisquer estágios, deve-se evitar hiperextensões da coluna com sobrecarga.

O que deveria ser feito então? Estratégias para que a coluna fique numa posição mais neutra possível, como se segue nas figuras. Pode-se usar um aparato sob o tronco para que se faça extensão e, ao final do movimento, a coluna permaneça em posição neutra. No caso do apoio inclinado, fica mais complicado do indivíduo ter a percepção corporal de que sua coluna esteja em posição neutra.

Os traços preto representam onde a coluna ficaria em posição neutra

Observem a coluna em posição neutra com o apoio inclinado

Por isso venho insistindo sobre isso, atividade física não é brincadeira, é coisa séria. E deve ser prescrita por um profissional.


terça-feira, 20 de outubro de 2015

Ingerir gordura para queimar gordura: Triglicerídeos de cadeia média

Triglicerídeos de cadeia média (MCTs ou TCMs)

Os triglicerídeos de cadeia media (TCM), presentes no óleo de coco e em alguns suplementos, por exemplo, são triglicerídeos com ácidos graxos com cadeia variando entre 6 e 10 carbonos. Os TCMs diferem dos outros triglicerídeos por serem relativamente solúveis em água e, com isso, rapidamente hidrolisados e absorvidos. Devido a essas propriedades, são menos suscetíveis à ação da lipase hormônio-sensível e à deposição no tecido adiposo (Clegg, 2010). Por isso, esses triglicerídeos são estudados por seus benefícios na saúde e no exercício.


Comparando com a suplementação de triglicerídeos de cadeia longa, St-Onge e cols (2003) demonstraram que o grupo suplementado com TCM apresentou maior perda de gordura, especialmente da gordura subcutânea, maior aumento do metabolismo e da oxidação de gordura. Igualmente comparando os ácidos graxos de cadeia longa e TCMs,  Zhang e cols (2009) encontraram maior diminuição da gordura corporal, triglicérides e LDL (colesterol ruim). No caso da amostra, composta por diabéticos, houve melhora na sensibilidade à insulina.

Dessa forma, os triglicerídeos de cadeia média se mostram uma opção de baixo custo e eficaz para perda de gordura e melhora da saúde.

Referências
Clegg ME. Int J Food Sci Nutr. 2010 Nov;61(7):653-79. doi: 10.3109/09637481003702114.
Medium-chain triglycerides are advantageous in promoting weight loss although not beneficial to exercise performance. Metabolism. 2007 Jul;56(7):985-91.

Han JR, Deng B, Sun J, Chen CG, Corkey BE, Kirkland JL, Ma J, Guo W. Effects of dietary medium-chain triglyceride on weight loss and insulin sensitivity in a group of moderately overweight free-living type 2 diabetic Chinese subjects.

St-Onge MP, Ross R, Parsons WD, Jones PJ. Medium-chain triglycerides increase energy expenditure and decrease adiposity in overweight men. Obes Res. 2003 Mar;11(3):395-402.

Zhang YH, Liu YH, Zheng ZX, Wang J, Zhang Y, Zhang RX, Yu XM, Jing HJ, Xue CY, Wu J. Medium- and long-chain fatty acid triacylglycerol reduce body fat and serum triglyceride in overweight and hypertriglyceridemic subjects. Zhonghua Yu Fang Yi Xue Za Zhi. 2009 Sep;43(9):765-71.

sexta-feira, 16 de outubro de 2015

Intervenções Nutricionais - Parte 05 - Nível de treinamento

O nível de treinamento se mostra uma variável impactante na quantidade e duração da resposta anabólica após o treino de força. Comparados a indivíduos sedentários, pessoas treinadas apresentam tanto a síntese quanto a  degradação protéica atenuadas, resultando num menor turnover de proteínas (Phillips e colaboradores, 1999). 
A amostra do estudo de Tang e colaboradores (2008) treinou apenas uma perna por 8 semanas e a outra serviu como controle. Após a intervenção, uma sessão de treino provocou uma maior síntese protéica no membro não treinado, sendo que o treinado apresentou uma atenuação na duração (e não na magnitude). Com um desenho de estudo similar, Kim e colaboradores (2005) encontraram atenuação na síntese protéica na perna treinada, embora a síntese protéica miofibrilar permaneceu a mesma. Esse achado é similar ao de Wilkinson e colaboradores (2008), indicando um refinamento nas respostas das sessões de treino e uma maior eficiência na síntese protéica pós-exercício. 
Para umas revisão compreensível desse tópico e como o nível de treinamento afeta a resposta de síntese protéica e o seu curso, Damas e colaboradores (2015) realizaram uma revisão e concluíram que o treinamento não diminui a amplitude, mas a duração da resposta de síntese protéica. Essa informação pode nos dizer que, para maximizar a hipertrofia muscular em indivíduos treinados, deve-se ter muita atenção no período pós-treino quanto ao fornecimento de proteína.


Apesar dos inúmeros estudos relatando os benefícios da proteína nas respostas adaptativas ao treino de força, relativamente poucos estudos têm sido realizados para identificar se indivíduos treinados necessitam de maiores doses de proteína pós-treino ou diariamente em relação a indivíduos não treinados.
As informações existentes sugerem que atletas realizando períodos de treinamento intenso podem se beneficiar do aumento do consumo de proteína, melhorando a função do sistema imune (Witard e colaboradores, 2014). Além disso, os indivíduos que competem em levantamento de peso ou outros esportes, podem se beneficiar do aumento da ingestão protéica (Phillips e colaboradores, 2014). 
Contudo, como discutido no tópico anterior sobre as doses por refeição, as respostas de síntese protéica não aumentam muito com um consumo de 20 g ou 0,25 g/Kg peso corporal. Com isso, além de mais estudos envolvendo atletas nesse sentido, na prática, recomenda-se uma atuação multidisciplinar no planejamento do treino e dieta. 

Referências

Damas, F., Phillips, S., Vechin, F. C., and Ugrinowitsch, C. (2015). A review of resistance training-induced changes in skeletal muscle protein synthesis and their contribution to hypertrophy. Sports. Med. 45, 801–807. doi:10.1007/s40279-015-0320-0

Kim, P. L., Staron, R. S., and Phillips, S. M. (2005). Fasted-state skeletal muscle protein synthesis after resistance exercise is altered with training. J. Physiol. 568, 283–290. doi: 10.1113/jphysiol.2005.093708 

Phillips, S. M., Tipton, K. D., Ferrando, A. A., and Wolfe, R. R. (1999). Resistance training reduces the acute exercise-induced increase in muscle protein turnover. Am. J. Physiol. 276, E118–E124.

Phillips, S. M. (2014b). A brief review of higher dietary protein diets in weight loss: a focus on athletes. Sport. Med. 44, 149–153. doi: 10.1007/s40279-014-0254-y

Tang, J. E., Perco, J. G., Moore, D. R., Wilkinson, S. B., and Phillips, S. M. (2008). Resistance training alters the response of fed state mixed muscle protein synthesis in young men. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294, R172–R178. doi: 10.1152/ajpregu.00636.2007

Wilkinson, S. B., Phillips, S. M., Atherton, P. J., Patel, R., Yarasheski, K. E., Tarnopolsky, M. A., et al. (2008). Differential effects of resistance and endurance exercise in the fed state on signalling molecule phosphorylation and protein synthesis in human muscle. J. Physiol. 586, 3701–3717. doi: 10.1113/jphysiol.2008.153916

Witard, O. C., Turner, J. E., Jackman, S. R., Kies, A. K., Jeukendrup, A. E., Bosch, J. A., et al. (2014b). High dietary protein restores overreaching induced impairments in leukocyte trafficking and reduces the incidence of upper respiratory tract infection in elite cyclists. Brain Behav. Immun. 39, 211–219. doi: 10.1016/j.bbi.2013.10.002

quinta-feira, 15 de outubro de 2015

Não tenho tempo para treinar... O que faço?

Esse post foi uma dica de quem acompanha meu trabalho, meus posts e também vejo essa queixa das pessoas na prática: como fazer uma atividade física com pouco tempo disponível?
Vamos ser sinceros, não existe falta de tempo, mas falta de organização da agenda.
- Primeiro que, quem é meu aluno ou já foi, sabe que sempre tento encaixar em algum horário do dia, caso tenha horários irregulares. Basta avisarem com certa antecedência (quando avisa em cima da hora, é por conta e risco de haver ou não horário disponível).
- Segundo, como já venho falado inúmeras vezes aqui no blog, um treino eficiente não precisa ser longo demais. Você não precisa ficar horas na academia, nem deve. Em torno de 40 minutos está ótimo. Já treinei alunos em 30 minutos (ou menos) por falta de tempo. E saíram do treino totalmente fatigados. Eu também já precisei treinar em meia hora. Então, tudo é questão de você conversar com seu professor/treinador e tentar adaptar seus horários e tempo disponíveis para o treino.


- Terceiro e uma das coisas mais difíceis: organização. Você precisa organizar seu dia para que possa treinar. Seja diminuindo o horário do almoço, seja levando tudo pronto para quando sair do trabalho. Por exemplo, deixe sempre uma roupa e tênis para treinar no carro ou no trabalho. Assim, caso você esqueça em casa, não precisará sabotar o treino, visto que terá uma reserva. Deixe pronto e leve alguma refeição ou shake pré-treino. E, se estiver muito cansado e hesitando em ir treinar, não deixe por menos, use-o. Assim, você se sentirá obrigado a ir treinar. 
Resumindo, o que vejo na prática é que a questão gira muito mais em torno de dar o pontapé, realizar algumas mudanças no dia-a-dia (mudanças sempre são difíceis, mas nada vem de graça) e conversar com um profissional que consiga gerenciar isso do que realmente falta de tempo.
Então, vamos treinar! Invista em você. Você é dono do seu tempo, não ele de você; gerencie-o!

Intervenções Nutricionais - Parte 04 - Ingestão de Proteínas e Carboidratos

A proposta da ingestão de carboidratos com proteínas é estimular a secreção de insulina e, assim otimizar a absorção dos aminoácidos. Realmente, a infusão local de insulina aumenta a síntese protéica (Hiller e colaboradores, 1998) e, quando se faz uma infusão de insulina com aminoácidos simultaneamente, há um aumento da síntese protéica e uma leve atenuação de sua degradação (Bennet e colaboradores, 1990), maiores do que a infusão ou de aminoácidos ou de insulina sozinhos.
Contudo, após um treino de força, a infusão de insulina não apresenta efeitos na síntese protéica, embora há uma leve supressão na sua degradação (Biolo e colaboradores, 1999). Børsheim e colaboradores (2004) encontraram o mesmo comportamento com a ingestão apenas de carboidratos após o treino de força, sem efeitos na síntese, mas uma atenuação na degradação protéica.


A coingestão de carboidratos com aminoácidos não provoca maiores efeitos no estímulo à síntese protéica, nem atenua sua degradação, caso a dose de proteína seja adequada (25 g) (Staples e colaboradores, 2011). Esses resultados indicam que, quando há uma dose adequada de proteína, a ingestão de carboidratos não provoca benefícios adicionais na síntese protéica. Provavelmente porque o aumento da secreção de insulina necessário para otimizar a síntese protéica seja muito baixo (Trommelen e colaboradores, 2015) (10-15 IU/mL), apenas 2 a 3 vezes os níveis basais para a maioria dos indivíduos saudáveis, o que é alcançado com uma pequena dose de proteína. Com baixas doses de proteína (por exemplo, menos que 0,25 g/kg peso corporal), a ingestão de carboidratos pode impactar a absorção protéica, aumentando os níveis de insulina e suprimindo a degradação de proteínas. 
Vale ressaltar que os autores não excluem a ingestão de carboidratos após uma sessão de treino de força para restabelecer os níveis de glicogênio muscular. Mas parece que, para otimizar a síntese protéica especificamente, uma ingestão adequada de proteínas já se mostra suficiente. 

Referências

Bennet, W. M., Connacher, A. A., Scrimgeour, C. M., Jung, R. T., and Rennie, M. J. (1990). Euglycemic hyperinsulinemia augments amino acid uptake by human leg tissues during hyperaminoacidemia. Am. J. Physiol. 259, E185–E194

Biolo, G., Williams, B. D., Fleming, R. Y. D., and Wolfe, R. R. (1999). Insulin action on muscle protein kinetics and amino acid transport during recovery after resistance exercise. Diabetes 48, 949–957. doi: 10.2337/diabetes.48.5.949

Børsheim, E., Cree, M. G., Tipton, K. D., Elliott, T. A., Aarsland, A., and Wolfe, R. R. (2004). Effect of carbohydrate intake on net muscle protein synthesis during recovery from resistance exercise. J. Appl. Physiol. 96, 674–678. doi: 10.1152/japplphysiol.00333.2003 

Hillier, T. A., Fryburg, D. A., Jahn, L. A., and Barrett, E. J. (1998). Extreme hyperinsulinemia unmasks insulin’s effect to stimulate protein synthesis in the human forearm. Am. J. Physiol. 274, E1067–E1074. 

Staples, A. W., Burd, N. A., West, D. W. D., Currie, K. D., Atherton, P. J., Moore, D. R., et al. (2011). Carbohydrate does not augment exercise-induced protein accretion versus protein alone. Med. Sci. Sports Exerc. 43, 1154–1161. doi:10.1249/MSS.0b013e31820751cb

Trommelen, J., Groen, B., Hamer, H., de Groot, L. C. P. G. M., and van Loon, L. J. (2015). Mechanisms in endocrinology: exogenous insulin does not increase muscle protein synthesis rate when administrated systemically: a systematic review. Eur. J. Endocrinol. 173, R25–R34. doi: 10.1530/eje-14-0902

sexta-feira, 9 de outubro de 2015

quinta-feira, 8 de outubro de 2015

Intervenções Nutricionais - Parte 03 - Qualidade da Proteína


Continuando a resenha do artigo de revisão

Robert W. Morton, Chris McGlory and Stuart M. Phillips. (2015). Nutritional interventions to augment resistance training-induced skeletal muscle hypertrophy. Frontiers in Physiology. 6:245

Qualidade da proteína

Há diferenças inerentes entre as proteínas isoladas mais comumente conhecidas: soja, caseína e whey. Proteínas como soja e whey possuem digestibilidade relativamente rápida, resultando em aminoacidemia rápida e induzindo a uma taxa de síntese protéica alta, mas transiente (Reitelseder e colaboradores, 2011)
A síntese protéica do corpo é estimulada mais pelo uso de whey protein, enquanto a caseína atua diminuindo o catabolismo protéico (Boirie e colaboradores, 1997). Após a ingestão de caseína isolada, soja e whey (todos provendo 10 g de aminoácidos essenciais), o aumento agudo (3 horas) na síntese protéica é maior com o consumo de whey (Tang e colaboradores, 2009). Interessante que a proteína de soja provocou uma maior taxa de síntese protéica que a caseína, tanto em repouso quanto após o exercício (Tang e colaboradores, 2009),
Parece que, pelo menos por 3 horas após a ingestão, a fonte de proteína mais efetiva seria o whey (Tang e colaboradores, 2009). Mesmo para aqueles que estão perdendo peso, após duas semanas de dieta hipocalórica, um consumo diário de whey (54 g) é mais efetivo que o de soja para anular a queda da resposta de síntese protéica (Hector e colaboradores, 2015). Ressalto que o autor fala em consumo diário, ou seja, ao longo do dia (e não as 54 g de uma vez).


Para explicar a atenuada resposta anabólica com a suplementação de caseína, os autores avaliaram as taxas de síntese protéica após uma sessão de treino de força com uma única dose de caseína ou de whey (25 g) ou pequenas doses a cada 20 minutos (2,5 g) de whey protein (West e colaboradores, 2011). A única dose de 25 gramas de whey protein resultou em maiores taxas de síntese protéica nos períodos de 1-3 horas e de 3-5 horas após o exercício (West e colaboradores, 2011). A administração rápida e imediata pode aumentar a entrega de aminoácidos essenciais ao músculo, especialmente a leucina, a um certo limiar, acionando a síntese protéica. Indepentente, misturas de proteína (1:2:1, whey:caseína:soja) mostraram que, quando o conteúdo de leucina é normalizado, são tão eficientes como o whey sozinho para estimular a síntese protéica (Reidy e colaboradores, 2013). Além disso, amostras que receberam 25 g de whey protein ou 6,25 g de whey com 5 g de leucina adicionada mostraram aumentos similares na síntese protéica, mesmo com a dose total de proteína mais baixa (Churchward-Venne e colaboradores, 2014). Parece que a leucinemia (aumento das concentrações de leucina) é que conduz a resposta de síntese protéica e assim, o processo de recuperação. A adição de isoleucina ou valina (os outros BCAAs) não aumentam a síntese protéica (ChurchwardVenne e colaboradores, 2014). Esse fato é subvalorizado devido a grande quantidade de suplementos enriquecidos com BCAAs que, conforme os resultados, não nos mostram vantagens adicionais em relação ao uso da leucina sozinha (Hyde e colaboradores, 2003)
Os autores especulam que o consumo de BCAA pode resultar numa competição de absorção no intestino e no músculo, por isso não torna-se superior à ingestão de leucina sozinha para estimular a síntese protéica.  
Parece que a síntese protéica pós-exercício, mensurada por 3 horas, seja otimizada pela ingestão de suplementos contendo altas doses de leucina e proteínas de rápida absorção (whey) (Tang e colaboradores, 2009). A aminoacidemia mais lenta é causada pela ingestão de caseína (Pennings e colaboradores, 2011) pode ser mais eficiente para sustentar a síntese protéica e atenuar o balanço nitrogenado por períodos maiores. 
Diferenças entre as fontes de proteína e sua habilidade de estimular a síntese protéica são uma combinação de digestão e de composição de aminoácidos da proteína, em particular seu conteúdo de leucina. A composição de aminoácidos do whey se mostra superior à proteína de soja provavelmente por seu maior conteúdo de leucina (Tang e colaboradores, 2009). Parece que o limiar de leucina para o estímulo de síntese protéica seja por volta de 3 g por refeição (Churchward-Venne e colaboradores, 2014),o que pode ser determinado por uma ingestão de 0,4 g de proteína/Kg corporal/refeição.

Referências
Boirie, Y., Dangin, M., Gachon, P., Vasson, M. P., Maubois, J. L., Beaufrère, B. et al. (1997). Slow and fast dietary proteins differently modulate postprandial protein accretion. Proc. Natl. Acad. Sci. U.S.A. 94, 14930–14935.

Churchward-Venne, T. A., Breen, L., Di Donato, D. M., Hector, A. J., Mitchell, C. J., Moore, D. R., et al. (2014). Leucine supplementation of a low-protein mixed macronutrient beverage enhances myofibrillar protein synthesis in young men: a double-blind, randomized trial1-3. Am. J. Clin. Nutr. 99, 276–286

Hector, A. J., Marcotte, G. R., Churchward-venne, T. A., Murphy, C. H., Breen, L., von Allmen, M., et al. (2015). Whey protein supplementation preserves postprandial myofibrillar protein synthesis during short-term energy restriction in overweight and obese adults. J. Nutr. 145, 246–252. 

Hyde, R., Taylor, P. M., and Hundal, H. S. (2003). Amino acid transporters: roles in amino acid sensing and signalling in animal cells. Biochem. J. 373, 1–18. 
Pennings, B., Boirie, Y., Senden, J. M. G., Gijsen, A. P., Kuipers, H., van Loon, L. J. C. et al. (2011). Whey protein stimulates postprandial muscle protein accretion more effectively than do casein and casein hydrolysate in older men. Am. J. Clin. Nutr. 93, 997–1005.

Reidy, P. T., Walker, D. K., Dickinson, J. M., Gundermann, D. M., Drummond, M. J., Timmerman, K. L., et al. (2013). Protein blend ingestion following resistance exercise promotes human muscle protein synthesis. J. Nutr. 143, 410–416.

Reitelseder, S., Agergaard, J., Doessing, S., Helmark, I. C., Lund, P., Kristensen, N. B., et al. (2011). Whey and casein labeled with L - [1- 13 C] leucine and muscle protein synthesis: effect of resistance exercise and protein ingestion. Am. J. Physiol. Endocrinol. Metab. 300, E231–E242. 

Tang, J. E., Moore, D. R., Kujbida, G. W., Tarnopolsky, M. A., and Phillips, S. M. (2009). Ingestion of whey hydrolysate, casein, or soy protein isolate: effects on mixed muscle protein synthesis at rest and following resistance exercise in young men. J. Appl. Physiol. 107, 987–992. 


West, D. W. D., Burd, N. A., Coffey, V. G., Baker, S. K., Burke, L. M., Hawley, J. A., et al. (2011). Rapid aminoacidemia enhances myofibrillar protein synthesis and anabolic intramuscular signaling responses after resistance exercise. Am. J. Clin. Nutr. 94, 795–803.

sábado, 3 de outubro de 2015

Intervenções nutricionais - Parte 02 - Tempo de ingestão de proteínas


Continuando a resenha do artigo sobre as intervenções nutricionais para otimizar a hipertrofia induzida pelo treino de força, vamos falar sobre o tempo da ingestão de proteína.
Sabe-se que o treino de força por si só resulta num aumento da síntese protéica até 48 horas; enquanto a degradação fica aumentada por 24 horas (Phillips e colaboradores, 1997). Essa elevação da síntese protéica é sensível à aminoacidemia (aumento da concentração de aminoácidos circulantes na corrente sanguínea). A duração dessa sensibilidade é de, pelo menos, 24 horas (Burd e colaboradores, 2011), independendo do nível de treinamento dos indivíduos. Dada essa sensibilidade, é presumível que o melhor período para ingestão de proteínas seria após o exercício.
Alguns autores sugerem que a ingestão de proteína antes do exercício seria mais vantajosa. Contudo, ingerindo 20 g de whey protein antes ou 1 hora após 10 séries de extensão de joelhos resultou em taxas similares de absorção de aminoácidos (Tipton e colaboradores, 2007). Outros estudos também não nos mostram diferenças entre as condutas (Fujita e colaboradores, 2009; Burke e colaboradores, 2012a). De qualquer forma, como protocolo seguro, os autores sugerem a ingestão de proteínas imediatamente após a sessão de treino.
Há apenas um estudo que utilizou a suplementação durante a sessão de treino (Beelen e colaboradores, 2008) em indivíduos jovens. A suplementação era oferecida antes e a cada 15 minutos de treino (0,15 g/Kg/h de carboidrato com ou sem 0,15 g/kg/h de caseína hidrolisada). Houve uma maior resposta de síntese protéica no protocolo de proteína com carboidrato, que se mostrou, em maior parte, devido à proteína. Contudo, a energia extra total não pode ser excluída como um fator que possa ter contribuído (Bellen e coladoradores, 2008). Embora o consumo de proteínas durante o exercício possa ter contribuído para o aumento da síntese protéica após o treino, os autores sugerem cautela com essa conduta, pois pode-se perder a aminoacidemia pós-exercício.
Uma recente meta-análise examinando o tempo de ingestão de proteína e hipertrofia muscular, correlacionou positivamente a proximidade da ingestão com a sessão de treinamento (Schoenfeld e colaboradores, 2013). Mas, após ajustar todas as covariáveis do estudo, os autores concluíram que a ingestão total de proteína é o maior preditor de hipertrofia muscular e que o tempo de ingestão não influenciaria. 
De qualquer maneira, a prática aconselha a suplementação pós-exercício, que é também um período de reidratação, reposição de carboidratos e reparação de lesões musculares (o chamado 3R).


Como o consumo de proteína deve ser dividido ao longo do dia gera debate. Em um estudo, o consumo de 4 doses de 20 g, a cada 3 horas e durante 12 horas foi mais eficiente para estimular a síntese protéica que doses maiores (2x40 g a cada 6 horas) ou pequenas doses (8x10 g a cada 1,5 hora) (Areta e colaboradores, 2013). Esses dados corroboram com o post anterior, onde em torno de 20 g seria o necessário para estimular a síntese protéica e o consumo excessivo seria oxidado.
Refeições antes de dormir podem prover proteínas para a recuperação muscular durante o sono. A ingestão de 40 g de caseína antes de dormir estimula a síntese protéica em indivíduos jovens (Res e colaboradores, 2012). Num estudo após 12 semanas de treino de força, a ingestão de uma bebida à base de caseína (27,5 g de proteína, 15 g de carboidrato e 0,1 g de gordura) em comparação com ingestão de uma bebida placebo, provocou aumento de massa muscular, área da fibra muscular e maiores ganhos de força (Snijders e colaboradores, 2015). Agora como um comentário meu, independente dos autores, vale ressaltar que não compararam a ingestão de suplementos com alimentos sólidos, mas a ingestão de suplementos com um placebo (nada). Logo, não estamos falando, necessariamente, de benefícios do suplemento, mas de uma refeição. Os autores também colocam como limitação do estudo que o grupo controle não contou com o aumento da ingestão protéica diária, o que pode colocar em dúvida se os ganhos foram pelo fato de se alimentarem antes de dormir ou pela maior ingestão energética diária.     
 Além disso, é interessante notar na meta-análise feita por Cermak e colaboradores (2012), que apenas 3 de 16 estudos demonstraram ganhos estatisticamente significantes com a suplementação de proteínas. E mais 5 estudos com ganhos estatisticamente significantes. A conclusão dos autores é que não se deve suplementar? Não, mas não qualquer um. O treino ainda é o maior fator para estímulo de síntese protéica. Portanto, suplemente se o estímulo do seu treino requerer para tanto.
Vimos então que o tempo da ingestão de proteína é uma variável a ser considerada para otimizar a síntese protéica após o treino de força, que se beneficia de uma "janela anabólica" por pelo menos 24 horas (Burd e colaboradores, 2011). Também é importante a distribuição da ingestão em suficientes doses (0,4g/kg/refeição), distribuídas ao longo do dia (Areta e colaboradores, 2013). Por último, a ingestão de doses maiores de proteína (40 g de caseína, por exemplo ou uma refeição com 0,6g/kg de proteína) antes de dormir parece aumentar a síntese de proteína durante o sono e beneficiar as adaptações crônicas.

Referências

Areta, J. L., Burke, L. M., Ross, M. L., Camera, D. M., West, D. W. D., Broad, E.M., et al. (2013). Timing and distribution of protein ingestion during prolonged recovery from resistance exercise alters myofibrillar protein synthesis. J. Physiol. 591, 2319–2331. 

Beelen, M., Koopman, R., Gijsen, A. P., Vandereyt, H., Kies, A. K., Kuipers, H., et al. (2008). Protein coingestion stimulates muscle protein synthesis during resistance-type exercise. Am. J. Physiol. Endocrinol. Metab. 295, E70–E77. 

Burd, N. A., West, D. W. D., Moore, D. R., Atherton, P. J., Staples, A. W., Prior, T., et al. (2011). Enhanced amino acid sensitivity of myofibrillar protein synthesis persists for up to 24 h after resistance exercise in young men. J. Nutr. 141, 568–573.

Burke, L. M., Hawley, J. A., Ross, M. L., Moore, D. R., Phillips, S. M., Slater, G. R., et al. (2012a). Preexercise aminoacidemia and muscle protein synthesis after resistance exercise. Med. Sci. Sports Exerc. 44, 1968–1977. 

Cermak, N. M., Res, P. T., Groot, L. C., De Saris, W. H. M., and Van Loon, L. J.C. (2012). Protein supplementation augments the adaptive response of skeletal muscle to resistance-type exercise training: a meta-analysis 1 – 3. Am. J. Clin. Nutr. 96, 1454–1464. 

Fujita, S., Dreyer, H. C., Drummond, M. J., Glynn, E. L., Volpi, E., and Rasmussen, B. B. (2009). Essential amino acid and carbohydrate ingestion before resistance exercise does not enhance postexercise muscle protein synthesis. J. Appl. Physiol. 106, 1730–1739.

Phillips, S. M., Tipton, K. D., Aarsland, A., Wolf, S. E., and Wolfe, R. R. (1997). Mixed muscle protein synthesis and breakdown after resistance exercise in humans. Am. J. Physiol. 273, E99–E107

Tipton, K. D., Elliott, T. A., Cree, M. G., Aarsland, A. A., Sanford, A. P., and Wolfe, R. R. (2007). Stimulation of net muscle protein synthesis by whey protein ingestion before and after exercise. Am. J. Physiol. Endocrinol. Metab. 292, E71–E76.

Res, P. T., Groen, B., Pennings, B., Beelen, M., Wallis, G. A., Gijsen, A. P., et al. (2012). Protein ingestion before sleep improves postexercise overnight recovery. Med. Sci. Sports Exerc. 44, 1560–1569. 

Schoenfeld, B. J., Aragon, A. A., and Krieger, J. W. (2013). The effect of protein timing on muscle strength and hypertrophy: a meta-analysis. J. Int. Soc. Sports Nutr. 10:53.

Snijders, T., Res, P. T., Smeets, J. S. J., Vliet, S., Van Kranenburg, J., Van Maase, K., et al. (2015). Protein ingestion before sleep increases muscle mass and strength gains during prolonged resistance-type exercise training in healthy young men. J. Nutr. 145, 1178–1784.