quarta-feira, 30 de setembro de 2015

Panqueca de aveia

Ótima receita para almoço, janta ou até refeição pré-treino.
A aveia é saudável, tem índice glicêmico baixo, promove sensação de saciedade. Além de contribuir para um melhor perfil lipídico sanguíneo, prevenindo doenças cardiovasculares.


Panqueca de aveia

Ingredientes

  • 1 ovo
  • 2 colheres sopa de aveia em flocos
  • 1 pitada de sal rosa
  • 1 colher rasa sopa de polvilho doce ou azedo
  • 1 fatia queijo minas light para o recheio

Modo de preparo

Bata todos os ingredientes no liquidificador até se tornar uma massa líquida. Coloque a massa na frigideira antiaderente e depois de 2 minutos, vire-a. Derreta todo o queijo minas light e coloque sobre a massa. Dobre em formato de panqueca e sirva.

terça-feira, 29 de setembro de 2015

Volume de treino e massa muscular

Já que estamos falando sobre respostas hormonais, tempo de sessão de treino, vamos ver o que todos querem: resultados.
Um estudo interessante de González-Badillo e colaboradores (2006) demonstrou que treinos com alta intensidade relativa (até a falha concêntrica, acima de 60% 1RM - repetição máxima) e volume moderado produzem maiores ganhos de força e massa muscular. Eles multiplicaram o número de repetições vezes o número de séries. O grupos foram de baixo volume (46 repetições), médio volume (93 repetições) e de alto volume (184 repetições). Observem que o que os autores colocaram como médio volume daria em torno de 8, 10 séries por treino. Na prática, onde as pessoas acham que "mais é melhor", isso seria um baixo volume.
Como disse no post anterior sobre as respostas agudas de testosterona, os aumentos de massa muscular não se devem somente às respostas hormonais agudas pós-treino. Mas observem que treinos muito longos, onde a relação testosterona/cortisol diminui muito, não há ganhos adicionais ou eles até são piores.
Então, tenham sempre em mente: no sistema biológico nem sempre "mais é melhor".


Referência
González-Badillo JJ, Izquierdo M, Gorostiaga EM. Moderate volume of high relative training intensity produces greater strength gains compared with low and high volumes in competitive weightlifters. J Strength Cond Res. 2006 Feb;20(1):73-81.

quinta-feira, 24 de setembro de 2015

Alta intensidade (HIIT) e respostas hormonais


Já foi discutido aqui no blog os motivos pelos quais exercícios de alta intensidade (HIIT, por exemplo) provocam alterações no metabolismo pós-exercício (veja o post sobre EPOC). E que essas alterações contribuem sobremaneira para a perda de gordura e conservação da massa magra durante o processo de emagrecimento. Ao passo que os exercícios de intensidade moderada, tradicionalmente prescritos para perda de peso e emagrecimento, emagrecem tanto quanto (ou menos), podem causar perda de massa magra (comprometendo o processo a longo prazo) e exigem muito mais disposição de tempo.
Vamos agora verificar uma das causas da eficiência dos exercícios de alta intensidade sobre a preservação da massa magra, que é sua resposta hormonal pós-exercício.
Vuorimaa e colaboradores (2008) analisaram corredores de média e longa distância em testes de 40 minutos na esteira num protocolo contínuo a 80% do volume máximo de oxigênio (VO2 máx)e noutro protocolo intervalado a 100% VO2máx. O grupo de corredores de médias distâncias apresentaram as concentrações de testosterona mais elevadas no teste intermitente e as de cortisol mais elevadas no contínuo quando comparados com o grupo de longas distâncias. Alguns poderão dizer que o grupo treinado em médias distâncias são adaptados a treinos com maior intensidade, por isso eles obtiveram maiores taxas de testosterona. Porém, quando os autores correlacionaram ambos os grupos com os testes, verificaram uma correlação positiva da testosterona com as concentrações de lactato (obtidas no teste inermitente) e uma correlação inversa entre o cortisol e o VO2; ou seja, quanto maior o VO2 em  exercício, menor seria a resposta de cortisol.
Num estudo mais recente, Dittrich e colaboradores (2013) avaliaram 12 atletas em exercícios contínuo e intermitente, porém ambos os grupos foram até a exaustão de acordo com a intensidade de cada protocolo. Como ambos os protocolos foram até a exaustão completa, era de se esperar que o cortisol aumentasse em ambos, porém no grupo intermitente aumentou 121% e no grupo contínuo, 132%.


A testosterona sendo um hormônio anabólico (estimula a síntese protéica muscular, na sua forma livre) e o cortisol, um hormônio catabólico (mobiliza as reservas de proteína, glicogênio e ácidos graxos), parece interessante manter uma razão testosterona/cortisol favorável ao hormônio anabólico. Exercícios de alta intensidade contribuem para um emagrecimento com a preservação ou até aumento da massa magra, entre outros fatores, por suas respostas hormonais agudas pós-treino, que, como discutido no post anterior (1,2), torna-se muito importante para as adaptações hormonais crônicas.

Referências
Dittrich N, de Lucas RD, Maioral MF, Diefenthaeler F, Guglielmo LG. Continuous and intermittent running to exhaustion at maximal lactate steady state: neuromuscular, biochemical and endocrinal responses. J Sci Med Sport. 2013 Nov;16(6):545-9.

Vuorimaa T, Ahotupa M, Häkkinen K, Vasankari T. Different hormonal response to continuous and intermittent exercise in middle-distance and marathon runners. Scand J Med Sci Sports. 2008 Oct;18(5):565-72.

quarta-feira, 23 de setembro de 2015

Respostas crônicas de testosterona, cortisol e treino de força


É bem documentado na literatura que o treino de força provoca alterações crônicas nas concentrações de hormônios anabólicos (Ahtiainen e colaboradores, 2003) e modificações no número de repectores para esses hormônios na célula muscular (Inoue e colaboradores, 1994).
Alguns estudos demonstram alterações crônicas nos niveis de testosterona em repouso em invidíduos jovens (Tsolakis e colaboradores, 2004). Porém, em idosos, essas modificações não se fizeram presentes (Häkkinen e colaboradores, 2001). 
Quanto ao tempo de treinamento, Ahtianen e colaboradores (2003) sugerem que as adaptações crônicas nos níveis hormonais se dão em indivíduos treinados em força por um longo período de treino. Já Sharon e colaboradores (1994) sugerem que  após curtos períodos de tempo, já se observam adaptações crônicas. O treino de força possui tantas variáveis de treinamento, como carga, intervalo entre as séries, distribuição de grupos musculares, variáveis de intensidade, que essas discrepâncias entre os estudos são até esperadas.


Um estudo bem interessante, realizado por Marx e colaboradores (2001), analisou a resposta crônica de testosterona e cortisol em mulheres. As respostas de testosterona se mostraram tal qual em homens, com um aumento das concentrações em repouso. Além de uma diminuição do cortisol em repouso. Essas alterações ocorreram nas 12 primeiras semanas nos grupos que realizaram séries simples (uma série por exercício) e séries múltiplas (mais de uma série por exercício). Porém, após 12 e 24 semanas, somente o grupo com séries múltiplas demonstraram continuidade nas adaptações.
Tão importantes quanto as adaptações crônicas, vemos o aumento do número de receptores aos hormônios anabólicos nas células do tecido muscular (Ratamess e colaboradores, 2005). E se tem demonstrado que essas adaptações dependem das respostas agudas de testosterona, como discutido no post anterior. Tanto a melhora da sensibilidade desses receptores quanto o aumento do seu número contribuem para uma melhor ação dos hormônios anabólicos, seja de forma aguda como crônica. Ferry e colaboradores (2014) demonstraram que as alterações nos receptores androgênicos são requiridas para os aumentos de força e hipertrofia no músculo.
Outro estudo interessante, realizado por Kadi e colaboradores (2000), analisou a quantidade de receptores por fibra muscular nos músculos trapézio superior e vasto lateral. A amostra era composta de halterofilistas com e sem uso de esteróides anabólicos e grupo controle (não treinados). Em ambos os grupos treinados houve um aumento no número de receptores para a testosterona, sobremaeira no grupo que utilizou esteróides anabólicos. Interessante que essas alterações se deram somente no músculo trapézio, sem alterações no vasto lateral. Isso pode ser devido ao tipo de fibras que constitui cada musculo, pois as fibras glicolíticas aumentam o número de receptores para testosterona mais facilmente que as oxidativas (Deschenes e colaboradores, 1994). 
As alterações no número de receptores parece ser um mecanismo que não requer um longo tempo de tempo para que ocorra. No estudo de Willoughby e Taylor (2004), 18 homens jovens submetidos ao treino de força (3 sessões com 3 séries de 8 a 10 RM) apresentaram aumento na síntese protéica, número de receptores e no RNAm desses receptores logo após a sessão de treinamento, alcançando um pico de 202% de aumento, por volta de 48 horas após a última sessão. No estudo de Ahtiainen (2011), não foi encontrado aumento na expressão dos receptores, porém no seu número 48 horas após o treino, sendo essas modificações correlacionadas com a hipertrofia do músculo esquelético.
Interessante que o aumento do número de receptores para testosterona ocorre como um mecanismo de resposta após um período de downregulation. Ou seja, logo após, devido ao estresse catabólico imposto pelo treino, o número de receptores diminui e, influenciados pelas respostas hormonais agudas, há um sobreaumento, maior que o anterior, no número desses receptores (Ratames e colaboradores, 2005). 

Referências

Ahtiainen JP, Pakarinen A, Alen M, Kraemer WJ, Häkkinen K. Muscle hypertrophy, hormonal adaptations and strength development during strength training in strength-trained and untrained men. Eur J Appl Physiol 2003; 89: 555-63.

Ahtiainen JP, Hulmi JJ, Kraemer WJ, Lehti M, Nyman K, Selänne H, Alen M, Pakarinen A, Komulainen J, Kovanen V, Mero AA, Häkkinen K. Heavy resistance exercise training and skeletal muscle androgen receptor expression in younger and older men. Steroids. 2011 Jan;76(1-2):183-92. 

Deschenes MR, Maresh CM, Armstrong LE, Covault J, Kraemer WJ, Crivello JF. Endurance and resistance exercise induce muscle fiber type specific responses in androgen binding capacity. J Steroid Bioch Mol Biol 1994; 50: 175-9.

Ferry A, Schuh M, Parlakian A, Mgrditchian T, Valnaud N, Joanne P, Butler-Browne G, Agbulut O, Metzger D. Myofiber androgen receptor promotes maximal mechanical overload-induced muscle hypertrophy and fiber type transition in male mice. Endocrinology. 2014 Dec;155(12):4739-48. 

Inoue K, Yamasaki T, Fushiki T, Okada Y, Sugimoto, E. Androgen receptor antagonist suppresses exercise-induced hypertrophy of skeletal muscle. Eur J Appl Physiol 1994; 69: 88-91.

Häkkinen K, Pakarinen A, Kraemer WJ, Häkkinen A, Valkeinen H, Alen M. Selective muscle hypertrophy, changes in EMG and force, and serum hormones during strength training in older women. J Appl Physiol 2001a; 91: 569-80.

Kadi F, Bonnrud P, Eriksson A, Thornell LE. The expression of androgen receptors in human neck and limb muscles: effects of training and self-administration of androgenic steroids. Histochem Cell Biol 2000; 113: 25-9.

Marx JO, Ratamess NA, Nindl BC, Gotshalk LA, Volek, JS, Dohi K, et al. Low-volume circuit versus high-volume periodized resistance training in women. Med Sci Sports Exerc 2001; 33: 635-43.

Ratamess, NA, Kraemer WJ, Volek JS, Maresh CM, Vanheest JL, Sharman MJ, et al. Androgen receptor content following heavy resistance exercise in men. J Steroid Biochem Mol Biol 2005; 93:35-42.

Staron RS, Karapondo DL, Kraemer WJ, Fry AC, Gordon SE, Falkel JE, et al. Skeletal muscle adaptations during early phase of heavy-resistance training in men and women. J Appl Physiol 1994; 76: 1247-55.

Tsolakis CK, Vagenas GK, Dessypris AG. Strength adaptations and hormonal responses to resistance training and detraining in preadolescent males. J Strength Cond Res 2004; 18: 625–9.

Willoughby DS, Taylor L. Effects of sequential bouts of resistance exercise on androgen receptor expression Med Sci Sports Exerc 2004; 36: 1499-1506.

quinta-feira, 17 de setembro de 2015

Respostas agudas de testosterona, cortisol e massa muscular

Como já discutido aqui no blog, o treinamento de força de alta intensidade é um potente estimulador de hormônios, como testosterona e cortisol. As respostas de testosterona não necessariamente são ligadas à secreção do Hormônio Luteinizante (hormônio do eixo hipotálamo-hipófise que estimula a sua secreção em repouso). Há autores que correlacionam as adaptações do treinamento de força no que se refere à massa muscular e força às respostas de testosterona e cortisol, assim como predizer a síndrome do supertreinamento ou riscos de lesões . Por isso, torna-se importante o conhecimento das relações entre as variáveis de treinamento e esses hormônios.
Ora, a testosterona sendo um hormônio anabólico (estimula a síntese protéica muscular, na sua forma livre) e o cortisol, um hormônio catabólico (mobiliza as reservas de proteína, glicogênio e ácidos graxos), parece interessante manter uma razão testosterona/cortisol favorável ao hormônio anabólico.
Alguns estudos, como de Häkkinen e Pakarinen (1993), demostram uma correlação entre as concentrações de testosterona dos indivíduos e as respostas de força e potência musculares com o treinamento. Obviamente, há outros fatores que colaboram para a produção de força, como fatores neurais (ativação, frequência de disparo e sincronização de unidades motoras), volume e intensidade do treinamento, ângulo de penação do músculo, composição das fibras musculares etc. Mas parece que os indivíduos que apresentavam maiores concentrações de testosterona obtiveram maiores ganhos de força e potência musculares.
As respostas agudas, durante e logo após as sessões de treinamento de força dependem de diversos fatores, como volume, intensidade, metodologia de treinamento, tipo de contração muscular, musculatura envolvida, além de fatores como idade e nível de treinamento (Cadore e colaboradores, 2008). 
Sabe-se que concentrações altas de lactato provocam um aumento nas respostas de testostona. No estudo de Lu e colaboradores (1997), as concentrações desse hormônio aumentaram após a infusão de lactato nos testísculos dos ratos, numa relação dose-dependente (quanto mais lactato, maior era a secreção de testosterona). Outros mecanismos são descritos como estimuladores da secreção de testosterona (Häkkinen e colaboradores, 1988), como a atividade adrenérgica, fluxo sanguíneo e a vasodilatação provocada pelo óxido nítrico (Meskaitis, 1997).
A relação entre volume e intensidade, assim como o tempo de treino também influenciam as respostas hormonais no treinamento. Por exemplo, treinos com maior quilagem (relação entre carga, número de séries e repetições), apresentam repostas de testosterona de maior magnitude. Como no estudo de  Häkkinen e Pakarinen (1993), em que uma sessão contava com 20 séries de 1 repetição máxima e a outra com 10 séries de 10 repetições a 70% de uma repetição máxima (RM). O grupo de maior quilagem e menor carga apresentou a testosterona aumentada após a sessão de treinamento, assim como o cortisol também se mostrou elevado.
Mas então qual seria a relação ideal entre treino, testosterona e cortisol?
Os mecanismos de liberação do cortisol demonstram ser parecidos com os em repouso. O exercício, sobretudo com maior volume, menor intervalo entre as séries e com maior concentração de lactato parece estimular a liberação de adrenocorticotropina (ACTH) que, por sua vez, irá estimular a secreção de cortisol. No estudo de Smilios e colaboradores (11), conforme os indivíduos foram realizando mais séries, a testosterona e o cortisol foram aumentando. Porém, após 6 séries, a testosterona se estabilizou e o cortisol continuou aumentando. Isso demonstra que nem sempre o mais é o melhor, as sessões de treinamento de força não devem ser muito longas, com volumes muito altos de treino. Vale lembrar um princípio básico de treinamento: volume é inversamente proporcional à intensidade. Ou seja, quando um treino é intenso, obrigatoriamente o volume deve ser menor.

Testosterona, Cortisol e tempo de treino (Michael e colaboradores, 2008). Cortisol tende a se manter durante o treino e a testosterona tende a decrescer em treinos mais longos. A taxa testosterona/cortisol tende a diminuir.


Em outro estudo,  Häkkinen e colaboradores (1998) demonstraram uma correlação entre a massa muscular envolvida e as respostas de testosterona. Por exemplo, os que querem maior volume de pernas e glúteos, devem fazer agachamento, pressão de pernas, passadas... e não ficarem horas fazendo glúteos 4 apoios.
No que se refere ao intervalo entre as séries, sessões moderadas e intensas apresentam maior secreção de testosterona com intervalos mais curtos (Kraemer e colaboradores, 1990). Porém, quando as séries são realizadas até a exaustão, Ahtiainen e colaboradores (2005) não encontraram diferenças entre intervalos de 2 ou 5 minutos. Esse fator mostra-se muito importante na elaboração da periodização do treino e em situações de improviso com o cliente, além da importância de intensidade no treinamento.
Quando se utilizam variáveis de alta intensidade, como repetições forçadas, as respostas de testosterona tendem a ser maiores, de maneira mais significativa em atletas que em pessoas sedentárias. Porém, em dias consecutivos, pode-se aumentar muito o cortisol com essa conduta (Ahtiainen e colaboradores, 2004). Vale relembrar o que já foi discutido aqui no blog, variáveis de alta intensidade não devem ser usadas indiscrimidamente, para isso existe periodização de treinamento.
Pode-se dizer que treinos intensos, com múltiplas séries e menor intervalo entre elas provocam alterações na secreção de testosterona e cortisol de forma aguda após o treino. Porém, até certo ponto, a testosterona se estabiliza e o cortisol continua subindo. Assim, como conduta, um treino visando aumentos de força e massa muscular não deveria ser muito longo. Assim, como o uso de variáveis de intensidade não deve ser usadas indiscriminadamente, mas colocado de forma consciente na periodização. 

Referências

Ahtiainen JP, Pakarinen A, Kraemer WJ, Hakkinen K. Acute hormonal responses to heavy resistance exercise in strength athletes versus nonathletes. J Appl Physiol. 2004;29(5):527-43.

Cadore Eduardo L, Brentano Michel Arias, Lhullier Francisco Luiz R, Kruel Luis Fernando M. Fatores relacionados com as respostas da testosterona e do cortisol ao treinamento de força. Revista Brasileira de Medicina do Esporte 2008; 14:74-78

Fahrner CL, Hackney AC. Effects of endurance exercise on free testosterone concentration and binding affinity of sex hormone binding globulin (SHBG). Int J Sports Med 1998; 19: 2-15.

Häkkinen K, Pakarinen A. Acute hormonal responses to two different fatiguing heavy-resistanceprotocols in male athletes. J Appl Physiol 1993a; 74: 882-7.

Häkkinen K, Pakarinen A, Newton RU, Kraemer WJ. Acute hormonal responses to heavy resistance lower and upper extremity exercise in young versus old men. Eur J Appl Physiol 1998b; 77: 312-9

Lu S, Lau C, Tung Y, Huang S, Chen Y, Shih H, et al. Lactate and the effects of exercise on testosterone secretion: evidence for the involvement of cAMP-mediated mechanism. Med Sci Sports Exerc 1997; 29: 1048-54.

Kraemer WJ, Marchitelli LJ, Gordon SE, Harman E, Dziados JE, Mello R, et al. Hormonal and growth factor responses to heavy resistance exercise protocols. J Appl Physiol 1990; 69: 1442-50

Meskaitis, VJ, Harman FS, Volek JS, Nindl BC, Kraemer WJ, Weinstok D, et al. Effects of exercise on testosterone and nitric oxide production in the rats testis. J Androl Suppl 1997: 31.

Michael A Starks, Stacy L Starks, Michael Kingsley, Martin Purpura, and Ralf Jäger. The effects of phosphatidylserine on endocrine response to moderate intensity exercise. J Int Soc Sports Nutr. 2008; 5: 11.


sexta-feira, 11 de setembro de 2015

Os riscos de seguir blogueiros fitness sem formação.


Esse vídeo é para você que paga todos os outros profissionais, mas acha que não é necessário o educador físico, acha que "sabe treinar" e vai pegar dicas com blogueiros fitness que sequer passaram na calçada de uma universidade. Ou para você que quer tirar vantagem sempre e se acha super esperto pegando o mais barato ou de graça. Ou mesmo você que se encanta somente pelo corpo do blogueiro que tem mais esteróides na corrente sanguínea que o próprio sangue.
Atividade física não é brincadeira. 

Prescrição de treinamento não é brincadeira.

quinta-feira, 10 de setembro de 2015

Mecanismos de hipertrofia Muscular e Periodização

Sabe-se que há uma grande variação inter-individual de hipertrofia muscular como adaptação ao treino de força, mesmo que os indivíduos sejam submetidos à mesma intensidade relativa (Petrella e colaboradores, 2008). Há pouco tempo, delegava-se às respostas hormonais grande parte das adaptações no que se refere aos ganhos de massa muscular. Porém, hoje sabe-se que há proteínas sinalizadoras como fator de crescimento, interferência de miostatina (proteína que inibe a hipertrofia das células musculares), células satélites (clique aqui), entre outros. 

Células satélites atuando nas células musculares no estudo de Bellamy e cols (2014)

Como no estudo de Bellamy e colaboradores (2014), onde houve aumento no pool de células satélites 24 e 72 horas após o exercício. Inclusive os autores relacionaram a ligação dessas células às fibras musculares do Tipo I e II à facilidade de ganho de massa muscular. Assim como  ocorreu um pool e maior expressão das células satélites, a expressão da proteína miostatina apresentou-se diminuída após o treinamento. 
Cameron e colaboradores (2012) analisou fatores de crescimento das células musculares e demonstrou que, após 3 séries a 80 e 30% de RM, ambos os grupos não apresentaram respostas diferentes. Assim como a resposta de hipertrofia após  10 semanas de treinamento. Deve-se levar em consideração que os grupos realizaram as séries até a falha concêntrica total, o que demonstra que a alta intensidade (aqui descrita como o esforço durante a série, não a carga utilizada) ativa fatores de crescimento muscular, mesmo com cargas menores.
Como dito acima, os indivíduos possuem uma variedade enorme individual de respostas ao treino de força no que se refere às respostas de hipertrofia no treinamento de força. O treinador dominar os mecanismos fisiológicos e bioquímicos referentes a esse assunto faz com que a periodização do treinamento tenha opções diversas e, sobretudo, apoiadas em evidências científicas em sua elaboração. Portanto, você que pensa "saber treinar", lamento lhe informar, não é bem assim. Consulte um profissional.


Referências

Bellamy LM, Joanisse S, Grubb A, Mitchell CJ, McKay BR. The acute satellite cell response and skeletal muscle hypertrophy following resistance training. PLos ONE 9(10) (2014).

Cameron J. Mitchell, Tyler A. Churchward-Venne, Daniel W. D. West, Nicholas A. Burd, Leigh Breen, Steven K. Baker, Stuart M. Phillips. Resistance exercise load does not determine training-mediated hypertrophic gains in young men. J. Appl Physiology 112:71-77 (2012).

Petrella JK, Kim J-s, Mayhew DL, Cross JM, Bamman MM. Potent myofiber hupertrophy during exercise training in humans is associated with satellite cell-mediated myonuclear addition: a cluster analysis. J Appl Physiology 104:1736-1742 (2008).


Leia também: Treinar intenso é preciso?
                       Treino de força e respostas hormonais.

quarta-feira, 9 de setembro de 2015

Proteínas e perda de gordura

Após a ingestão de proteínas, sabe-se que a hiperaminoacidemia estimula as taxas de síntese proteica muscular. E muito se tem discutido sobre essa estratégia em dietas de restrição calórica, no sentido de conservar a massa muscular. 


Nesse sentido, Churchward e colaboradores (2013) demonstraram que dietas com 1,8 gramas de proteína/quilo de peso corporal/dia são mais eficientes na manutenção da massa magra  do que as que utilizam 0,8 gramas de proteína/quilo de peso corporal/dia. Não necessariamente aumentam a perda de gordura, mas a longo prazo, a manutenção da massa magra é um fator para continuar ou manter o processo de emagrecimento. Nesse sentido, recomenda a utilização de maiores quantidades de proteínas e aminoácidos, pois contribuem para um aumento do anabolismo do músculo esquelético em dietas de restrição calórica mais prolongadas. Sobretudo se combinadas com exercícios de força (musculação).

Referência:

Churchward-Venne TA, Murphy CH, Longland TM, Phillips SM. Role of protein and amino acids in promoting lean mass accretion with resistance exercise and attenuating lean mass loss during energy deficit in humans. Amino Acids. 2013 May 5.

Projeto Verão?

quinta-feira, 3 de setembro de 2015

Suplementação: beta-alanina

Durante o exercício intenso, sabe-se que o acúmulo de lactato e, consequentemente, íons hidrogênio diminuem o pH sanguíneo, limitando a performance e levando à fadiga muscular. Dentre as medidas para postergar a fadiga muscular e melhorar a performance nos treinos está a suplementação de beta-alanina. Esse aminoácido é encontrado em diversos suplementos, principalmente nos pré-treinos ou pre-workouts.


A beta-alanina é um dos componentes da carnosina, junto com a L-histidina. Mas a L-histidina existe em grande quantidade no músculo esquelético, sendo a suplementação de beta-alanina mais necessária para praticantes de exercícios intensos. Porém, não se pode consumir diretamente a carnosina, porque ela vai ser quebrada nos dois aminoácidos no trato digestivo para, depois formar carnosina novamente. Então, não há necessidade de ingerir uma molécula maior para quebrá-la e depois formá-la novamente.
A carnosina vai atuar como um tamponante, inibindo a acidose e a diminuição de pH provocada por exercícios intensos e de curta duração. Ela possui outras funções, entre elas até contra radicais livres. Mas nesse momento vamos focar em sua ação de tamponamento.
Sabe-se que o treinamento intenso e de curta duração contribui para aumentar os níveis de carnosina no tecido muscular. Como o treinamento de força visando hipertrofia expõe o atleta constantemente a diminuições de pH sanguíneo, as taxas de carnosina no tecido muscular desses atletas geralmente é maior. A carnosina é atuante em torno de 40% do tamponamento da acidose induzida pelo exercício. Além disso, ela ativa a miosina ATPase, mantendo os estoques de ATP na célula muscular (ou seja, mais energia durante o exercício).
Atletas, sejam de alto rendimento ou recreativos encontram na suplementação de beta-alanina diversos efeitos ergogênicos. Podemos citar uma menor acidose e diminuição do pH, maior resistência anaeróbica, além de um retardamento da fadiga. 
Interessante ressaltar que a suplementação de creatina parece potencializar os efeitos da beta alanina. Inclui-se nesse sentido, o aumento da massa muscular magra.
O efeito colateral da beta-alanina é, em alguns casos, a sensação de parestesia ou “formigamento”, geralmente em membros e nuca. Porém, sem implicações clinicas ou alterações cardiovasculares.

Referência:
Julie Y. Culbertson, Richard B. Kreider, Mike Greenwood & Matthew Cooke. Effects of Beta-Alanine on Muscle Carnosine and Exercise Performance: A Review of the Current Literature. Nutrients 2010, 2, 75-98;