sexta-feira, 9 de outubro de 2015

quinta-feira, 8 de outubro de 2015

Intervenções Nutricionais - Parte 03 - Qualidade da Proteína


Continuando a resenha do artigo de revisão

Robert W. Morton, Chris McGlory and Stuart M. Phillips. (2015). Nutritional interventions to augment resistance training-induced skeletal muscle hypertrophy. Frontiers in Physiology. 6:245

Qualidade da proteína

Há diferenças inerentes entre as proteínas isoladas mais comumente conhecidas: soja, caseína e whey. Proteínas como soja e whey possuem digestibilidade relativamente rápida, resultando em aminoacidemia rápida e induzindo a uma taxa de síntese protéica alta, mas transiente (Reitelseder e colaboradores, 2011)
A síntese protéica do corpo é estimulada mais pelo uso de whey protein, enquanto a caseína atua diminuindo o catabolismo protéico (Boirie e colaboradores, 1997). Após a ingestão de caseína isolada, soja e whey (todos provendo 10 g de aminoácidos essenciais), o aumento agudo (3 horas) na síntese protéica é maior com o consumo de whey (Tang e colaboradores, 2009). Interessante que a proteína de soja provocou uma maior taxa de síntese protéica que a caseína, tanto em repouso quanto após o exercício (Tang e colaboradores, 2009),
Parece que, pelo menos por 3 horas após a ingestão, a fonte de proteína mais efetiva seria o whey (Tang e colaboradores, 2009). Mesmo para aqueles que estão perdendo peso, após duas semanas de dieta hipocalórica, um consumo diário de whey (54 g) é mais efetivo que o de soja para anular a queda da resposta de síntese protéica (Hector e colaboradores, 2015). Ressalto que o autor fala em consumo diário, ou seja, ao longo do dia (e não as 54 g de uma vez).


Para explicar a atenuada resposta anabólica com a suplementação de caseína, os autores avaliaram as taxas de síntese protéica após uma sessão de treino de força com uma única dose de caseína ou de whey (25 g) ou pequenas doses a cada 20 minutos (2,5 g) de whey protein (West e colaboradores, 2011). A única dose de 25 gramas de whey protein resultou em maiores taxas de síntese protéica nos períodos de 1-3 horas e de 3-5 horas após o exercício (West e colaboradores, 2011). A administração rápida e imediata pode aumentar a entrega de aminoácidos essenciais ao músculo, especialmente a leucina, a um certo limiar, acionando a síntese protéica. Indepentente, misturas de proteína (1:2:1, whey:caseína:soja) mostraram que, quando o conteúdo de leucina é normalizado, são tão eficientes como o whey sozinho para estimular a síntese protéica (Reidy e colaboradores, 2013). Além disso, amostras que receberam 25 g de whey protein ou 6,25 g de whey com 5 g de leucina adicionada mostraram aumentos similares na síntese protéica, mesmo com a dose total de proteína mais baixa (Churchward-Venne e colaboradores, 2014). Parece que a leucinemia (aumento das concentrações de leucina) é que conduz a resposta de síntese protéica e assim, o processo de recuperação. A adição de isoleucina ou valina (os outros BCAAs) não aumentam a síntese protéica (ChurchwardVenne e colaboradores, 2014). Esse fato é subvalorizado devido a grande quantidade de suplementos enriquecidos com BCAAs que, conforme os resultados, não nos mostram vantagens adicionais em relação ao uso da leucina sozinha (Hyde e colaboradores, 2003)
Os autores especulam que o consumo de BCAA pode resultar numa competição de absorção no intestino e no músculo, por isso não torna-se superior à ingestão de leucina sozinha para estimular a síntese protéica.  
Parece que a síntese protéica pós-exercício, mensurada por 3 horas, seja otimizada pela ingestão de suplementos contendo altas doses de leucina e proteínas de rápida absorção (whey) (Tang e colaboradores, 2009). A aminoacidemia mais lenta é causada pela ingestão de caseína (Pennings e colaboradores, 2011) pode ser mais eficiente para sustentar a síntese protéica e atenuar o balanço nitrogenado por períodos maiores. 
Diferenças entre as fontes de proteína e sua habilidade de estimular a síntese protéica são uma combinação de digestão e de composição de aminoácidos da proteína, em particular seu conteúdo de leucina. A composição de aminoácidos do whey se mostra superior à proteína de soja provavelmente por seu maior conteúdo de leucina (Tang e colaboradores, 2009). Parece que o limiar de leucina para o estímulo de síntese protéica seja por volta de 3 g por refeição (Churchward-Venne e colaboradores, 2014),o que pode ser determinado por uma ingestão de 0,4 g de proteína/Kg corporal/refeição.

Referências
Boirie, Y., Dangin, M., Gachon, P., Vasson, M. P., Maubois, J. L., Beaufrère, B. et al. (1997). Slow and fast dietary proteins differently modulate postprandial protein accretion. Proc. Natl. Acad. Sci. U.S.A. 94, 14930–14935.

Churchward-Venne, T. A., Breen, L., Di Donato, D. M., Hector, A. J., Mitchell, C. J., Moore, D. R., et al. (2014). Leucine supplementation of a low-protein mixed macronutrient beverage enhances myofibrillar protein synthesis in young men: a double-blind, randomized trial1-3. Am. J. Clin. Nutr. 99, 276–286

Hector, A. J., Marcotte, G. R., Churchward-venne, T. A., Murphy, C. H., Breen, L., von Allmen, M., et al. (2015). Whey protein supplementation preserves postprandial myofibrillar protein synthesis during short-term energy restriction in overweight and obese adults. J. Nutr. 145, 246–252. 

Hyde, R., Taylor, P. M., and Hundal, H. S. (2003). Amino acid transporters: roles in amino acid sensing and signalling in animal cells. Biochem. J. 373, 1–18. 
Pennings, B., Boirie, Y., Senden, J. M. G., Gijsen, A. P., Kuipers, H., van Loon, L. J. C. et al. (2011). Whey protein stimulates postprandial muscle protein accretion more effectively than do casein and casein hydrolysate in older men. Am. J. Clin. Nutr. 93, 997–1005.

Reidy, P. T., Walker, D. K., Dickinson, J. M., Gundermann, D. M., Drummond, M. J., Timmerman, K. L., et al. (2013). Protein blend ingestion following resistance exercise promotes human muscle protein synthesis. J. Nutr. 143, 410–416.

Reitelseder, S., Agergaard, J., Doessing, S., Helmark, I. C., Lund, P., Kristensen, N. B., et al. (2011). Whey and casein labeled with L - [1- 13 C] leucine and muscle protein synthesis: effect of resistance exercise and protein ingestion. Am. J. Physiol. Endocrinol. Metab. 300, E231–E242. 

Tang, J. E., Moore, D. R., Kujbida, G. W., Tarnopolsky, M. A., and Phillips, S. M. (2009). Ingestion of whey hydrolysate, casein, or soy protein isolate: effects on mixed muscle protein synthesis at rest and following resistance exercise in young men. J. Appl. Physiol. 107, 987–992. 


West, D. W. D., Burd, N. A., Coffey, V. G., Baker, S. K., Burke, L. M., Hawley, J. A., et al. (2011). Rapid aminoacidemia enhances myofibrillar protein synthesis and anabolic intramuscular signaling responses after resistance exercise. Am. J. Clin. Nutr. 94, 795–803.

sábado, 3 de outubro de 2015

Intervenções nutricionais - Parte 02 - Tempo de ingestão de proteínas


Continuando a resenha do artigo sobre as intervenções nutricionais para otimizar a hipertrofia induzida pelo treino de força, vamos falar sobre o tempo da ingestão de proteína.
Sabe-se que o treino de força por si só resulta num aumento da síntese protéica até 48 horas; enquanto a degradação fica aumentada por 24 horas (Phillips e colaboradores, 1997). Essa elevação da síntese protéica é sensível à aminoacidemia (aumento da concentração de aminoácidos circulantes na corrente sanguínea). A duração dessa sensibilidade é de, pelo menos, 24 horas (Burd e colaboradores, 2011), independendo do nível de treinamento dos indivíduos. Dada essa sensibilidade, é presumível que o melhor período para ingestão de proteínas seria após o exercício.
Alguns autores sugerem que a ingestão de proteína antes do exercício seria mais vantajosa. Contudo, ingerindo 20 g de whey protein antes ou 1 hora após 10 séries de extensão de joelhos resultou em taxas similares de absorção de aminoácidos (Tipton e colaboradores, 2007). Outros estudos também não nos mostram diferenças entre as condutas (Fujita e colaboradores, 2009; Burke e colaboradores, 2012a). De qualquer forma, como protocolo seguro, os autores sugerem a ingestão de proteínas imediatamente após a sessão de treino.
Há apenas um estudo que utilizou a suplementação durante a sessão de treino (Beelen e colaboradores, 2008) em indivíduos jovens. A suplementação era oferecida antes e a cada 15 minutos de treino (0,15 g/Kg/h de carboidrato com ou sem 0,15 g/kg/h de caseína hidrolisada). Houve uma maior resposta de síntese protéica no protocolo de proteína com carboidrato, que se mostrou, em maior parte, devido à proteína. Contudo, a energia extra total não pode ser excluída como um fator que possa ter contribuído (Bellen e coladoradores, 2008). Embora o consumo de proteínas durante o exercício possa ter contribuído para o aumento da síntese protéica após o treino, os autores sugerem cautela com essa conduta, pois pode-se perder a aminoacidemia pós-exercício.
Uma recente meta-análise examinando o tempo de ingestão de proteína e hipertrofia muscular, correlacionou positivamente a proximidade da ingestão com a sessão de treinamento (Schoenfeld e colaboradores, 2013). Mas, após ajustar todas as covariáveis do estudo, os autores concluíram que a ingestão total de proteína é o maior preditor de hipertrofia muscular e que o tempo de ingestão não influenciaria. 
De qualquer maneira, a prática aconselha a suplementação pós-exercício, que é também um período de reidratação, reposição de carboidratos e reparação de lesões musculares (o chamado 3R).


Como o consumo de proteína deve ser dividido ao longo do dia gera debate. Em um estudo, o consumo de 4 doses de 20 g, a cada 3 horas e durante 12 horas foi mais eficiente para estimular a síntese protéica que doses maiores (2x40 g a cada 6 horas) ou pequenas doses (8x10 g a cada 1,5 hora) (Areta e colaboradores, 2013). Esses dados corroboram com o post anterior, onde em torno de 20 g seria o necessário para estimular a síntese protéica e o consumo excessivo seria oxidado.
Refeições antes de dormir podem prover proteínas para a recuperação muscular durante o sono. A ingestão de 40 g de caseína antes de dormir estimula a síntese protéica em indivíduos jovens (Res e colaboradores, 2012). Num estudo após 12 semanas de treino de força, a ingestão de uma bebida à base de caseína (27,5 g de proteína, 15 g de carboidrato e 0,1 g de gordura) em comparação com ingestão de uma bebida placebo, provocou aumento de massa muscular, área da fibra muscular e maiores ganhos de força (Snijders e colaboradores, 2015). Agora como um comentário meu, independente dos autores, vale ressaltar que não compararam a ingestão de suplementos com alimentos sólidos, mas a ingestão de suplementos com um placebo (nada). Logo, não estamos falando, necessariamente, de benefícios do suplemento, mas de uma refeição. Os autores também colocam como limitação do estudo que o grupo controle não contou com o aumento da ingestão protéica diária, o que pode colocar em dúvida se os ganhos foram pelo fato de se alimentarem antes de dormir ou pela maior ingestão energética diária.     
 Além disso, é interessante notar na meta-análise feita por Cermak e colaboradores (2012), que apenas 3 de 16 estudos demonstraram ganhos estatisticamente significantes com a suplementação de proteínas. E mais 5 estudos com ganhos estatisticamente significantes. A conclusão dos autores é que não se deve suplementar? Não, mas não qualquer um. O treino ainda é o maior fator para estímulo de síntese protéica. Portanto, suplemente se o estímulo do seu treino requerer para tanto.
Vimos então que o tempo da ingestão de proteína é uma variável a ser considerada para otimizar a síntese protéica após o treino de força, que se beneficia de uma "janela anabólica" por pelo menos 24 horas (Burd e colaboradores, 2011). Também é importante a distribuição da ingestão em suficientes doses (0,4g/kg/refeição), distribuídas ao longo do dia (Areta e colaboradores, 2013). Por último, a ingestão de doses maiores de proteína (40 g de caseína, por exemplo ou uma refeição com 0,6g/kg de proteína) antes de dormir parece aumentar a síntese de proteína durante o sono e beneficiar as adaptações crônicas.

Referências

Areta, J. L., Burke, L. M., Ross, M. L., Camera, D. M., West, D. W. D., Broad, E.M., et al. (2013). Timing and distribution of protein ingestion during prolonged recovery from resistance exercise alters myofibrillar protein synthesis. J. Physiol. 591, 2319–2331. 

Beelen, M., Koopman, R., Gijsen, A. P., Vandereyt, H., Kies, A. K., Kuipers, H., et al. (2008). Protein coingestion stimulates muscle protein synthesis during resistance-type exercise. Am. J. Physiol. Endocrinol. Metab. 295, E70–E77. 

Burd, N. A., West, D. W. D., Moore, D. R., Atherton, P. J., Staples, A. W., Prior, T., et al. (2011). Enhanced amino acid sensitivity of myofibrillar protein synthesis persists for up to 24 h after resistance exercise in young men. J. Nutr. 141, 568–573.

Burke, L. M., Hawley, J. A., Ross, M. L., Moore, D. R., Phillips, S. M., Slater, G. R., et al. (2012a). Preexercise aminoacidemia and muscle protein synthesis after resistance exercise. Med. Sci. Sports Exerc. 44, 1968–1977. 

Cermak, N. M., Res, P. T., Groot, L. C., De Saris, W. H. M., and Van Loon, L. J.C. (2012). Protein supplementation augments the adaptive response of skeletal muscle to resistance-type exercise training: a meta-analysis 1 – 3. Am. J. Clin. Nutr. 96, 1454–1464. 

Fujita, S., Dreyer, H. C., Drummond, M. J., Glynn, E. L., Volpi, E., and Rasmussen, B. B. (2009). Essential amino acid and carbohydrate ingestion before resistance exercise does not enhance postexercise muscle protein synthesis. J. Appl. Physiol. 106, 1730–1739.

Phillips, S. M., Tipton, K. D., Aarsland, A., Wolf, S. E., and Wolfe, R. R. (1997). Mixed muscle protein synthesis and breakdown after resistance exercise in humans. Am. J. Physiol. 273, E99–E107

Tipton, K. D., Elliott, T. A., Cree, M. G., Aarsland, A. A., Sanford, A. P., and Wolfe, R. R. (2007). Stimulation of net muscle protein synthesis by whey protein ingestion before and after exercise. Am. J. Physiol. Endocrinol. Metab. 292, E71–E76.

Res, P. T., Groen, B., Pennings, B., Beelen, M., Wallis, G. A., Gijsen, A. P., et al. (2012). Protein ingestion before sleep improves postexercise overnight recovery. Med. Sci. Sports Exerc. 44, 1560–1569. 

Schoenfeld, B. J., Aragon, A. A., and Krieger, J. W. (2013). The effect of protein timing on muscle strength and hypertrophy: a meta-analysis. J. Int. Soc. Sports Nutr. 10:53.

Snijders, T., Res, P. T., Smeets, J. S. J., Vliet, S., Van Kranenburg, J., Van Maase, K., et al. (2015). Protein ingestion before sleep increases muscle mass and strength gains during prolonged resistance-type exercise training in healthy young men. J. Nutr. 145, 1178–1784. 

quinta-feira, 1 de outubro de 2015

Intervenções nutricionais - Parte 01 - dose de proteína

Artigo de Revisão
Robert W. Morton, Chris McGlory and Stuart M. Phillips. (2015). Nutritional interventions to augment resistance training-induced skeletal muscle hypertrophy. Frontiers in Physiology. 6:245

Este é um denso artigo de revisão que vou desmembrá-lo aqui no blog, pois além de ser recente, ele traz a resposta para muitas dúvidas e põe em cheque diversas condutas vistas por aí.
Vamos começar com uma informação básica. No músculo esquelético (tecido muscular) há um turnover de proteínas, que inclui a síntese de proteína muscular (SPM) e a degradação de proteína muscular (DPM). Essa diferença pode resultar num balanço nitrogenado positivo (ocorrendo hipertrofia muscular) ou negativo (perda ou atrofia muscular). Por exemplo, durante o sono, há uma situação de maior síntese. Igualmente quando se ingere alguma proteína, o corpo demonstra um aumento transiente na síntese e uma queda da degradação.
O treino de força por si só, mesmo em jejum, estimula a síntese protéica. Porém, essa taxa aumentada de síntese, não é capaz de induzir sozinha a hipertrofia muscular. Assim, repetidas sessões de treino de força (musculação) associada às refeições e descanso, resultam em hipertrofia muscular. 
O que gera dúvidas é sobre o protocolo mais eficiente. Vamos começar então sobre a dose de proteína.


Um dos primeiros estudos a analisar a responsividade às doses de proteína foi de Moore e colaboradores (2009), em que foi dada proteína do ovo (albumina) a homens jovens praticantes de musculação. Os autores não encontraram diferença na taxa de síntese protéica entre 20 e 40 g de ingestão protéica.  A ingestão de 20 g de proteína foi responsável por 89% do aumento da síntese protéica. Igualmente realizado em jovens (halterofilistas), o estudo de Witard e colaboradores, 2014), não encontrou diferenças na síntese protéica após a ingestão de 20 ou 40 g de proteína do soro do leite (whey protein). Parece que 20 g de proteína se mostra suficiente para estimular a síntese protéica seja em repouso (Cuthbertson e colaboradores, 2005) quanto após o exercícios (Moore e colaboradores, 2009). Resultados similares têm sido encontrados com alimentos sólidos e em repouso, onde a ingestão de 30 g de proteína da carne foi tão efetiva quanto 90 g (Symons e colaboradores, 2009). Uma ingestão de proteína mais alta faz com que seu nível de oxidação seja mais alto, aumentando a produção de uréia (Witard e colaboradores, 2014a), indicando que há um limite de aminoácidos utilizados para a síntese protéica. 
A limitação desses estudos é que a maioria das amostras foram submetidas a sessões de treino de membros inferiores. Assim, resta a dúvida se maiores doses não seriam necessárias ao se treinar também os membros superiores numa única sessão.
A respeito disso, os autores sugeriram uma estimativa de necessidade protéica por refeição, que seria em torno de 0,25g/Kg do peso corporal/refeição. Por exemplo, uma pessoa de 100 Kg precisaria de 25 gramas de proteína por refeição (0,25 x 100). Outra pessoa de 70 Kg, necessitaria de 17,5 g de proteína por refeição (70 x 0,25).
Após uma sessão de treinamento concomitante a ingestão de proteínas, a síntese chega a 4-5 vezes mais que a degradação (Phillips e colaboradores, 2009). Os autores concordam que há outros mecanismos de lesões musculares durante o exercício, assim como a necessidade protéica de outros tecidos do corpo que não o músculo esquelético. Logo, a taxa de síntese protéica pode não ser a única medida a ser empregada para otimizar os ganhos de massa muscular em humanos e a necessidade de proteína por refeição possa ser um pouco maior. Mas temos uma base de que doses altíssima numa refeição parecem não oferecer ganhos adicionais.

Referências

Moore, D. R., Robinson, M. J., Fry, J. L., Tang, J. E., Glover, E. I., Wilkinson, S. B., et al. (2009). Ingested protein dose response of muscle and albumin protein synthesis after resistance exercise in young men 1–3. Am. J. Clin. Nutr. 89,161–168.

Phillips, S. M., Glover, E. I., and Rennie, M. J. (2009). Alterations of protein turnover underlying disuse atrophy in human skeletal muscle. J. Appl. Physiol. 107, 645–654.

Symons, T. B., Sheffield-Moore, M., Wolfe, R. R., and Paddon-Jones, D. (2009). A moderate serving of high-quality protein maximally stimulates skeletal muscle protein synthesis in young and elderly subjects. J. Am. Diet. Assoc. 109, 1582–1586.

Witard, O. C., Jackman, S. R., Breen, L., Smith, K., Selby, A., and Tipton, K. D. (2014a). Myofibrillar muscle protein synthesis rates subsequent to a meal in response to increasing doses of whey protein at rest and after resistance exercise. Am. J. Clin. Nutr. 99, 86–95

quarta-feira, 30 de setembro de 2015

Panqueca de aveia

Ótima receita para almoço, janta ou até refeição pré-treino.
A aveia é saudável, tem índice glicêmico baixo, promove sensação de saciedade. Além de contribuir para um melhor perfil lipídico sanguíneo, prevenindo doenças cardiovasculares.


Panqueca de aveia

Ingredientes

  • 1 ovo
  • 2 colheres sopa de aveia em flocos
  • 1 pitada de sal rosa
  • 1 colher rasa sopa de polvilho doce ou azedo
  • 1 fatia queijo minas light para o recheio

Modo de preparo

Bata todos os ingredientes no liquidificador até se tornar uma massa líquida. Coloque a massa na frigideira antiaderente e depois de 2 minutos, vire-a. Derreta todo o queijo minas light e coloque sobre a massa. Dobre em formato de panqueca e sirva.

terça-feira, 29 de setembro de 2015

Volume de treino e massa muscular

Já que estamos falando sobre respostas hormonais, tempo de sessão de treino, vamos ver o que todos querem: resultados.
Um estudo interessante de González-Badillo e colaboradores (2006) demonstrou que treinos com alta intensidade relativa (até a falha concêntrica, acima de 60% 1RM - repetição máxima) e volume moderado produzem maiores ganhos de força e massa muscular. Eles multiplicaram o número de repetições vezes o número de séries. O grupos foram de baixo volume (46 repetições), médio volume (93 repetições) e de alto volume (184 repetições). Observem que o que os autores colocaram como médio volume daria em torno de 8, 10 séries por treino. Na prática, onde as pessoas acham que "mais é melhor", isso seria um baixo volume.
Como disse no post anterior sobre as respostas agudas de testosterona, os aumentos de massa muscular não se devem somente às respostas hormonais agudas pós-treino. Mas observem que treinos muito longos, onde a relação testosterona/cortisol diminui muito, não há ganhos adicionais ou eles até são piores.
Então, tenham sempre em mente: no sistema biológico nem sempre "mais é melhor".


Referência
González-Badillo JJ, Izquierdo M, Gorostiaga EM. Moderate volume of high relative training intensity produces greater strength gains compared with low and high volumes in competitive weightlifters. J Strength Cond Res. 2006 Feb;20(1):73-81.

quinta-feira, 24 de setembro de 2015

Alta intensidade (HIIT) e respostas hormonais


Já foi discutido aqui no blog os motivos pelos quais exercícios de alta intensidade (HIIT, por exemplo) provocam alterações no metabolismo pós-exercício (veja o post sobre EPOC). E que essas alterações contribuem sobremaneira para a perda de gordura e conservação da massa magra durante o processo de emagrecimento. Ao passo que os exercícios de intensidade moderada, tradicionalmente prescritos para perda de peso e emagrecimento, emagrecem tanto quanto (ou menos), podem causar perda de massa magra (comprometendo o processo a longo prazo) e exigem muito mais disposição de tempo.
Vamos agora verificar uma das causas da eficiência dos exercícios de alta intensidade sobre a preservação da massa magra, que é sua resposta hormonal pós-exercício.
Vuorimaa e colaboradores (2008) analisaram corredores de média e longa distância em testes de 40 minutos na esteira num protocolo contínuo a 80% do volume máximo de oxigênio (VO2 máx)e noutro protocolo intervalado a 100% VO2máx. O grupo de corredores de médias distâncias apresentaram as concentrações de testosterona mais elevadas no teste intermitente e as de cortisol mais elevadas no contínuo quando comparados com o grupo de longas distâncias. Alguns poderão dizer que o grupo treinado em médias distâncias são adaptados a treinos com maior intensidade, por isso eles obtiveram maiores taxas de testosterona. Porém, quando os autores correlacionaram ambos os grupos com os testes, verificaram uma correlação positiva da testosterona com as concentrações de lactato (obtidas no teste inermitente) e uma correlação inversa entre o cortisol e o VO2; ou seja, quanto maior o VO2 em  exercício, menor seria a resposta de cortisol.
Num estudo mais recente, Dittrich e colaboradores (2013) avaliaram 12 atletas em exercícios contínuo e intermitente, porém ambos os grupos foram até a exaustão de acordo com a intensidade de cada protocolo. Como ambos os protocolos foram até a exaustão completa, era de se esperar que o cortisol aumentasse em ambos, porém no grupo intermitente aumentou 121% e no grupo contínuo, 132%.


A testosterona sendo um hormônio anabólico (estimula a síntese protéica muscular, na sua forma livre) e o cortisol, um hormônio catabólico (mobiliza as reservas de proteína, glicogênio e ácidos graxos), parece interessante manter uma razão testosterona/cortisol favorável ao hormônio anabólico. Exercícios de alta intensidade contribuem para um emagrecimento com a preservação ou até aumento da massa magra, entre outros fatores, por suas respostas hormonais agudas pós-treino, que, como discutido no post anterior (1,2), torna-se muito importante para as adaptações hormonais crônicas.

Referências
Dittrich N, de Lucas RD, Maioral MF, Diefenthaeler F, Guglielmo LG. Continuous and intermittent running to exhaustion at maximal lactate steady state: neuromuscular, biochemical and endocrinal responses. J Sci Med Sport. 2013 Nov;16(6):545-9.

Vuorimaa T, Ahotupa M, Häkkinen K, Vasankari T. Different hormonal response to continuous and intermittent exercise in middle-distance and marathon runners. Scand J Med Sci Sports. 2008 Oct;18(5):565-72.

quarta-feira, 23 de setembro de 2015

Respostas crônicas de testosterona, cortisol e treino de força


É bem documentado na literatura que o treino de força provoca alterações crônicas nas concentrações de hormônios anabólicos (Ahtiainen e colaboradores, 2003) e modificações no número de repectores para esses hormônios na célula muscular (Inoue e colaboradores, 1994).
Alguns estudos demonstram alterações crônicas nos niveis de testosterona em repouso em invidíduos jovens (Tsolakis e colaboradores, 2004). Porém, em idosos, essas modificações não se fizeram presentes (Häkkinen e colaboradores, 2001). 
Quanto ao tempo de treinamento, Ahtianen e colaboradores (2003) sugerem que as adaptações crônicas nos níveis hormonais se dão em indivíduos treinados em força por um longo período de treino. Já Sharon e colaboradores (1994) sugerem que  após curtos períodos de tempo, já se observam adaptações crônicas. O treino de força possui tantas variáveis de treinamento, como carga, intervalo entre as séries, distribuição de grupos musculares, variáveis de intensidade, que essas discrepâncias entre os estudos são até esperadas.


Um estudo bem interessante, realizado por Marx e colaboradores (2001), analisou a resposta crônica de testosterona e cortisol em mulheres. As respostas de testosterona se mostraram tal qual em homens, com um aumento das concentrações em repouso. Além de uma diminuição do cortisol em repouso. Essas alterações ocorreram nas 12 primeiras semanas nos grupos que realizaram séries simples (uma série por exercício) e séries múltiplas (mais de uma série por exercício). Porém, após 12 e 24 semanas, somente o grupo com séries múltiplas demonstraram continuidade nas adaptações.
Tão importantes quanto as adaptações crônicas, vemos o aumento do número de receptores aos hormônios anabólicos nas células do tecido muscular (Ratamess e colaboradores, 2005). E se tem demonstrado que essas adaptações dependem das respostas agudas de testosterona, como discutido no post anterior. Tanto a melhora da sensibilidade desses receptores quanto o aumento do seu número contribuem para uma melhor ação dos hormônios anabólicos, seja de forma aguda como crônica. Ferry e colaboradores (2014) demonstraram que as alterações nos receptores androgênicos são requiridas para os aumentos de força e hipertrofia no músculo.
Outro estudo interessante, realizado por Kadi e colaboradores (2000), analisou a quantidade de receptores por fibra muscular nos músculos trapézio superior e vasto lateral. A amostra era composta de halterofilistas com e sem uso de esteróides anabólicos e grupo controle (não treinados). Em ambos os grupos treinados houve um aumento no número de receptores para a testosterona, sobremaeira no grupo que utilizou esteróides anabólicos. Interessante que essas alterações se deram somente no músculo trapézio, sem alterações no vasto lateral. Isso pode ser devido ao tipo de fibras que constitui cada musculo, pois as fibras glicolíticas aumentam o número de receptores para testosterona mais facilmente que as oxidativas (Deschenes e colaboradores, 1994). 
As alterações no número de receptores parece ser um mecanismo que não requer um longo tempo de tempo para que ocorra. No estudo de Willoughby e Taylor (2004), 18 homens jovens submetidos ao treino de força (3 sessões com 3 séries de 8 a 10 RM) apresentaram aumento na síntese protéica, número de receptores e no RNAm desses receptores logo após a sessão de treinamento, alcançando um pico de 202% de aumento, por volta de 48 horas após a última sessão. No estudo de Ahtiainen (2011), não foi encontrado aumento na expressão dos receptores, porém no seu número 48 horas após o treino, sendo essas modificações correlacionadas com a hipertrofia do músculo esquelético.
Interessante que o aumento do número de receptores para testosterona ocorre como um mecanismo de resposta após um período de downregulation. Ou seja, logo após, devido ao estresse catabólico imposto pelo treino, o número de receptores diminui e, influenciados pelas respostas hormonais agudas, há um sobreaumento, maior que o anterior, no número desses receptores (Ratames e colaboradores, 2005). 

Referências

Ahtiainen JP, Pakarinen A, Alen M, Kraemer WJ, Häkkinen K. Muscle hypertrophy, hormonal adaptations and strength development during strength training in strength-trained and untrained men. Eur J Appl Physiol 2003; 89: 555-63.

Ahtiainen JP, Hulmi JJ, Kraemer WJ, Lehti M, Nyman K, Selänne H, Alen M, Pakarinen A, Komulainen J, Kovanen V, Mero AA, Häkkinen K. Heavy resistance exercise training and skeletal muscle androgen receptor expression in younger and older men. Steroids. 2011 Jan;76(1-2):183-92. 

Deschenes MR, Maresh CM, Armstrong LE, Covault J, Kraemer WJ, Crivello JF. Endurance and resistance exercise induce muscle fiber type specific responses in androgen binding capacity. J Steroid Bioch Mol Biol 1994; 50: 175-9.

Ferry A, Schuh M, Parlakian A, Mgrditchian T, Valnaud N, Joanne P, Butler-Browne G, Agbulut O, Metzger D. Myofiber androgen receptor promotes maximal mechanical overload-induced muscle hypertrophy and fiber type transition in male mice. Endocrinology. 2014 Dec;155(12):4739-48. 

Inoue K, Yamasaki T, Fushiki T, Okada Y, Sugimoto, E. Androgen receptor antagonist suppresses exercise-induced hypertrophy of skeletal muscle. Eur J Appl Physiol 1994; 69: 88-91.

Häkkinen K, Pakarinen A, Kraemer WJ, Häkkinen A, Valkeinen H, Alen M. Selective muscle hypertrophy, changes in EMG and force, and serum hormones during strength training in older women. J Appl Physiol 2001a; 91: 569-80.

Kadi F, Bonnrud P, Eriksson A, Thornell LE. The expression of androgen receptors in human neck and limb muscles: effects of training and self-administration of androgenic steroids. Histochem Cell Biol 2000; 113: 25-9.

Marx JO, Ratamess NA, Nindl BC, Gotshalk LA, Volek, JS, Dohi K, et al. Low-volume circuit versus high-volume periodized resistance training in women. Med Sci Sports Exerc 2001; 33: 635-43.

Ratamess, NA, Kraemer WJ, Volek JS, Maresh CM, Vanheest JL, Sharman MJ, et al. Androgen receptor content following heavy resistance exercise in men. J Steroid Biochem Mol Biol 2005; 93:35-42.

Staron RS, Karapondo DL, Kraemer WJ, Fry AC, Gordon SE, Falkel JE, et al. Skeletal muscle adaptations during early phase of heavy-resistance training in men and women. J Appl Physiol 1994; 76: 1247-55.

Tsolakis CK, Vagenas GK, Dessypris AG. Strength adaptations and hormonal responses to resistance training and detraining in preadolescent males. J Strength Cond Res 2004; 18: 625–9.

Willoughby DS, Taylor L. Effects of sequential bouts of resistance exercise on androgen receptor expression Med Sci Sports Exerc 2004; 36: 1499-1506.

quinta-feira, 17 de setembro de 2015

Respostas agudas de testosterona, cortisol e massa muscular

Como já discutido aqui no blog, o treinamento de força de alta intensidade é um potente estimulador de hormônios, como testosterona e cortisol. As respostas de testosterona não necessariamente são ligadas à secreção do Hormônio Luteinizante (hormônio do eixo hipotálamo-hipófise que estimula a sua secreção em repouso). Há autores que correlacionam as adaptações do treinamento de força no que se refere à massa muscular e força às respostas de testosterona e cortisol, assim como predizer a síndrome do supertreinamento ou riscos de lesões . Por isso, torna-se importante o conhecimento das relações entre as variáveis de treinamento e esses hormônios.
Ora, a testosterona sendo um hormônio anabólico (estimula a síntese protéica muscular, na sua forma livre) e o cortisol, um hormônio catabólico (mobiliza as reservas de proteína, glicogênio e ácidos graxos), parece interessante manter uma razão testosterona/cortisol favorável ao hormônio anabólico.
Alguns estudos, como de Häkkinen e Pakarinen (1993), demostram uma correlação entre as concentrações de testosterona dos indivíduos e as respostas de força e potência musculares com o treinamento. Obviamente, há outros fatores que colaboram para a produção de força, como fatores neurais (ativação, frequência de disparo e sincronização de unidades motoras), volume e intensidade do treinamento, ângulo de penação do músculo, composição das fibras musculares etc. Mas parece que os indivíduos que apresentavam maiores concentrações de testosterona obtiveram maiores ganhos de força e potência musculares.
As respostas agudas, durante e logo após as sessões de treinamento de força dependem de diversos fatores, como volume, intensidade, metodologia de treinamento, tipo de contração muscular, musculatura envolvida, além de fatores como idade e nível de treinamento (Cadore e colaboradores, 2008). 
Sabe-se que concentrações altas de lactato provocam um aumento nas respostas de testostona. No estudo de Lu e colaboradores (1997), as concentrações desse hormônio aumentaram após a infusão de lactato nos testísculos dos ratos, numa relação dose-dependente (quanto mais lactato, maior era a secreção de testosterona). Outros mecanismos são descritos como estimuladores da secreção de testosterona (Häkkinen e colaboradores, 1988), como a atividade adrenérgica, fluxo sanguíneo e a vasodilatação provocada pelo óxido nítrico (Meskaitis, 1997).
A relação entre volume e intensidade, assim como o tempo de treino também influenciam as respostas hormonais no treinamento. Por exemplo, treinos com maior quilagem (relação entre carga, número de séries e repetições), apresentam repostas de testosterona de maior magnitude. Como no estudo de  Häkkinen e Pakarinen (1993), em que uma sessão contava com 20 séries de 1 repetição máxima e a outra com 10 séries de 10 repetições a 70% de uma repetição máxima (RM). O grupo de maior quilagem e menor carga apresentou a testosterona aumentada após a sessão de treinamento, assim como o cortisol também se mostrou elevado.
Mas então qual seria a relação ideal entre treino, testosterona e cortisol?
Os mecanismos de liberação do cortisol demonstram ser parecidos com os em repouso. O exercício, sobretudo com maior volume, menor intervalo entre as séries e com maior concentração de lactato parece estimular a liberação de adrenocorticotropina (ACTH) que, por sua vez, irá estimular a secreção de cortisol. No estudo de Smilios e colaboradores (11), conforme os indivíduos foram realizando mais séries, a testosterona e o cortisol foram aumentando. Porém, após 6 séries, a testosterona se estabilizou e o cortisol continuou aumentando. Isso demonstra que nem sempre o mais é o melhor, as sessões de treinamento de força não devem ser muito longas, com volumes muito altos de treino. Vale lembrar um princípio básico de treinamento: volume é inversamente proporcional à intensidade. Ou seja, quando um treino é intenso, obrigatoriamente o volume deve ser menor.

Testosterona, Cortisol e tempo de treino (Michael e colaboradores, 2008). Cortisol tende a se manter durante o treino e a testosterona tende a decrescer em treinos mais longos. A taxa testosterona/cortisol tende a diminuir.


Em outro estudo,  Häkkinen e colaboradores (1998) demonstraram uma correlação entre a massa muscular envolvida e as respostas de testosterona. Por exemplo, os que querem maior volume de pernas e glúteos, devem fazer agachamento, pressão de pernas, passadas... e não ficarem horas fazendo glúteos 4 apoios.
No que se refere ao intervalo entre as séries, sessões moderadas e intensas apresentam maior secreção de testosterona com intervalos mais curtos (Kraemer e colaboradores, 1990). Porém, quando as séries são realizadas até a exaustão, Ahtiainen e colaboradores (2005) não encontraram diferenças entre intervalos de 2 ou 5 minutos. Esse fator mostra-se muito importante na elaboração da periodização do treino e em situações de improviso com o cliente, além da importância de intensidade no treinamento.
Quando se utilizam variáveis de alta intensidade, como repetições forçadas, as respostas de testosterona tendem a ser maiores, de maneira mais significativa em atletas que em pessoas sedentárias. Porém, em dias consecutivos, pode-se aumentar muito o cortisol com essa conduta (Ahtiainen e colaboradores, 2004). Vale relembrar o que já foi discutido aqui no blog, variáveis de alta intensidade não devem ser usadas indiscrimidamente, para isso existe periodização de treinamento.
Pode-se dizer que treinos intensos, com múltiplas séries e menor intervalo entre elas provocam alterações na secreção de testosterona e cortisol de forma aguda após o treino. Porém, até certo ponto, a testosterona se estabiliza e o cortisol continua subindo. Assim, como conduta, um treino visando aumentos de força e massa muscular não deveria ser muito longo. Assim, como o uso de variáveis de intensidade não deve ser usadas indiscriminadamente, mas colocado de forma consciente na periodização. 

Referências

Ahtiainen JP, Pakarinen A, Kraemer WJ, Hakkinen K. Acute hormonal responses to heavy resistance exercise in strength athletes versus nonathletes. J Appl Physiol. 2004;29(5):527-43.

Cadore Eduardo L, Brentano Michel Arias, Lhullier Francisco Luiz R, Kruel Luis Fernando M. Fatores relacionados com as respostas da testosterona e do cortisol ao treinamento de força. Revista Brasileira de Medicina do Esporte 2008; 14:74-78

Fahrner CL, Hackney AC. Effects of endurance exercise on free testosterone concentration and binding affinity of sex hormone binding globulin (SHBG). Int J Sports Med 1998; 19: 2-15.

Häkkinen K, Pakarinen A. Acute hormonal responses to two different fatiguing heavy-resistanceprotocols in male athletes. J Appl Physiol 1993a; 74: 882-7.

Häkkinen K, Pakarinen A, Newton RU, Kraemer WJ. Acute hormonal responses to heavy resistance lower and upper extremity exercise in young versus old men. Eur J Appl Physiol 1998b; 77: 312-9

Lu S, Lau C, Tung Y, Huang S, Chen Y, Shih H, et al. Lactate and the effects of exercise on testosterone secretion: evidence for the involvement of cAMP-mediated mechanism. Med Sci Sports Exerc 1997; 29: 1048-54.

Kraemer WJ, Marchitelli LJ, Gordon SE, Harman E, Dziados JE, Mello R, et al. Hormonal and growth factor responses to heavy resistance exercise protocols. J Appl Physiol 1990; 69: 1442-50

Meskaitis, VJ, Harman FS, Volek JS, Nindl BC, Kraemer WJ, Weinstok D, et al. Effects of exercise on testosterone and nitric oxide production in the rats testis. J Androl Suppl 1997: 31.

Michael A Starks, Stacy L Starks, Michael Kingsley, Martin Purpura, and Ralf Jäger. The effects of phosphatidylserine on endocrine response to moderate intensity exercise. J Int Soc Sports Nutr. 2008; 5: 11.


sexta-feira, 11 de setembro de 2015

Os riscos de seguir blogueiros fitness sem formação.


Esse vídeo é para você que paga todos os outros profissionais, mas acha que não é necessário o educador físico, acha que "sabe treinar" e vai pegar dicas com blogueiros fitness que sequer passaram na calçada de uma universidade. Ou para você que quer tirar vantagem sempre e se acha super esperto pegando o mais barato ou de graça. Ou mesmo você que se encanta somente pelo corpo do blogueiro que tem mais esteróides na corrente sanguínea que o próprio sangue.
Atividade física não é brincadeira. 

Prescrição de treinamento não é brincadeira.

quinta-feira, 10 de setembro de 2015

Mecanismos de hipertrofia Muscular e Periodização

Sabe-se que há uma grande variação inter-individual de hipertrofia muscular como adaptação ao treino de força, mesmo que os indivíduos sejam submetidos à mesma intensidade relativa (Petrella e colaboradores, 2008). Há pouco tempo, delegava-se às respostas hormonais grande parte das adaptações no que se refere aos ganhos de massa muscular. Porém, hoje sabe-se que há proteínas sinalizadoras como fator de crescimento, interferência de miostatina (proteína que inibe a hipertrofia das células musculares), células satélites (clique aqui), entre outros. 

Células satélites atuando nas células musculares no estudo de Bellamy e cols (2014)

Como no estudo de Bellamy e colaboradores (2014), onde houve aumento no pool de células satélites 24 e 72 horas após o exercício. Inclusive os autores relacionaram a ligação dessas células às fibras musculares do Tipo I e II à facilidade de ganho de massa muscular. Assim como  ocorreu um pool e maior expressão das células satélites, a expressão da proteína miostatina apresentou-se diminuída após o treinamento. 
Cameron e colaboradores (2012) analisou fatores de crescimento das células musculares e demonstrou que, após 3 séries a 80 e 30% de RM, ambos os grupos não apresentaram respostas diferentes. Assim como a resposta de hipertrofia após  10 semanas de treinamento. Deve-se levar em consideração que os grupos realizaram as séries até a falha concêntrica total, o que demonstra que a alta intensidade (aqui descrita como o esforço durante a série, não a carga utilizada) ativa fatores de crescimento muscular, mesmo com cargas menores.
Como dito acima, os indivíduos possuem uma variedade enorme individual de respostas ao treino de força no que se refere às respostas de hipertrofia no treinamento de força. O treinador dominar os mecanismos fisiológicos e bioquímicos referentes a esse assunto faz com que a periodização do treinamento tenha opções diversas e, sobretudo, apoiadas em evidências científicas em sua elaboração. Portanto, você que pensa "saber treinar", lamento lhe informar, não é bem assim. Consulte um profissional.


Referências

Bellamy LM, Joanisse S, Grubb A, Mitchell CJ, McKay BR. The acute satellite cell response and skeletal muscle hypertrophy following resistance training. PLos ONE 9(10) (2014).

Cameron J. Mitchell, Tyler A. Churchward-Venne, Daniel W. D. West, Nicholas A. Burd, Leigh Breen, Steven K. Baker, Stuart M. Phillips. Resistance exercise load does not determine training-mediated hypertrophic gains in young men. J. Appl Physiology 112:71-77 (2012).

Petrella JK, Kim J-s, Mayhew DL, Cross JM, Bamman MM. Potent myofiber hupertrophy during exercise training in humans is associated with satellite cell-mediated myonuclear addition: a cluster analysis. J Appl Physiology 104:1736-1742 (2008).


Leia também: Treinar intenso é preciso?
                       Treino de força e respostas hormonais.

quarta-feira, 9 de setembro de 2015

Proteínas e perda de gordura

Após a ingestão de proteínas, sabe-se que a hiperaminoacidemia estimula as taxas de síntese proteica muscular. E muito se tem discutido sobre essa estratégia em dietas de restrição calórica, no sentido de conservar a massa muscular. 


Nesse sentido, Churchward e colaboradores (2013) demonstraram que dietas com 1,8 gramas de proteína/quilo de peso corporal/dia são mais eficientes na manutenção da massa magra  do que as que utilizam 0,8 gramas de proteína/quilo de peso corporal/dia. Não necessariamente aumentam a perda de gordura, mas a longo prazo, a manutenção da massa magra é um fator para continuar ou manter o processo de emagrecimento. Nesse sentido, recomenda a utilização de maiores quantidades de proteínas e aminoácidos, pois contribuem para um aumento do anabolismo do músculo esquelético em dietas de restrição calórica mais prolongadas. Sobretudo se combinadas com exercícios de força (musculação).

Referência:

Churchward-Venne TA, Murphy CH, Longland TM, Phillips SM. Role of protein and amino acids in promoting lean mass accretion with resistance exercise and attenuating lean mass loss during energy deficit in humans. Amino Acids. 2013 May 5.

Projeto Verão?

quinta-feira, 3 de setembro de 2015

Suplementação: beta-alanina

Durante o exercício intenso, sabe-se que o acúmulo de lactato e, consequentemente, íons hidrogênio diminuem o pH sanguíneo, limitando a performance e levando à fadiga muscular. Dentre as medidas para postergar a fadiga muscular e melhorar a performance nos treinos está a suplementação de beta-alanina. Esse aminoácido é encontrado em diversos suplementos, principalmente nos pré-treinos ou pre-workouts.


A beta-alanina é um dos componentes da carnosina, junto com a L-histidina. Mas a L-histidina existe em grande quantidade no músculo esquelético, sendo a suplementação de beta-alanina mais necessária para praticantes de exercícios intensos. Porém, não se pode consumir diretamente a carnosina, porque ela vai ser quebrada nos dois aminoácidos no trato digestivo para, depois formar carnosina novamente. Então, não há necessidade de ingerir uma molécula maior para quebrá-la e depois formá-la novamente.
A carnosina vai atuar como um tamponante, inibindo a acidose e a diminuição de pH provocada por exercícios intensos e de curta duração. Ela possui outras funções, entre elas até contra radicais livres. Mas nesse momento vamos focar em sua ação de tamponamento.
Sabe-se que o treinamento intenso e de curta duração contribui para aumentar os níveis de carnosina no tecido muscular. Como o treinamento de força visando hipertrofia expõe o atleta constantemente a diminuições de pH sanguíneo, as taxas de carnosina no tecido muscular desses atletas geralmente é maior. A carnosina é atuante em torno de 40% do tamponamento da acidose induzida pelo exercício. Além disso, ela ativa a miosina ATPase, mantendo os estoques de ATP na célula muscular (ou seja, mais energia durante o exercício).
Atletas, sejam de alto rendimento ou recreativos encontram na suplementação de beta-alanina diversos efeitos ergogênicos. Podemos citar uma menor acidose e diminuição do pH, maior resistência anaeróbica, além de um retardamento da fadiga. 
Interessante ressaltar que a suplementação de creatina parece potencializar os efeitos da beta alanina. Inclui-se nesse sentido, o aumento da massa muscular magra.
O efeito colateral da beta-alanina é, em alguns casos, a sensação de parestesia ou “formigamento”, geralmente em membros e nuca. Porém, sem implicações clinicas ou alterações cardiovasculares.

Referência:
Julie Y. Culbertson, Richard B. Kreider, Mike Greenwood & Matthew Cooke. Effects of Beta-Alanine on Muscle Carnosine and Exercise Performance: A Review of the Current Literature. Nutrients 2010, 2, 75-98;

segunda-feira, 31 de agosto de 2015

Treino de força e perda de gordura: Adiponectina

Muito se tem pesquisado sobre os mecanismos pelos quais atividades anaeróbicas provocam a perda de gordura corporal. Um dos mais conhecidos é o aumento do gasto energético após o treino, como já discutimos aqui no blog (1, 2, 3, 4. 5, 6, 7).
Porém, como sempre a ciência procura entender melhor os mecanismos, vamos falar hoje a adiponectina. Trata-se de um hormônio protéico, secretada pelo tecido adiposo (que há algum tempo acreditava-se ser um tecido inerte, responsável basicamente por proteção térmica e armazenamento de energia). Modula alguns processos metabólicos, como a regulação da glicemia e a mobilização de ácidos graxos. Como sua concentração aumenta com a perda de peso, ela está inversamente proporcional ao percentual de gordura.


Baseados nisso, Daves e colaboradores (2015), em seu recente estudo, analisou os efeitos de 12 semanas de treinamento de força em diabéticos (possuem maiores níveis de adiponectina) e não-diabéticos. Após a intervenção, os níveis de adiponectina diminuíram nos grupos que se exercitaram, especialmente nos diabéticos. E, como de se esperar, foi encontrada uma correlação inversa entre os níveis de adiponectina e perda de gordura. O autor sugere, inclusive que, assim como se relaciona a capacidade aeróbica com maiores níveis de adiponectina, se faça o mesmo com o treinamento de força.

Isso mostra que os mecanismos pelos quais o treino de força atua na perda de gordura são bem mais complexos. E não se resume apenas na recuperação muscular por si.

Referência
Davis GR, Stephens JM, Nelson AG. Effect of 12 weeks of periodized resistance training upon total plasma adiponectin concentration in healthy young men. J Strength Cond Res. 2015 Aug 8.




terça-feira, 25 de agosto de 2015

Efeitos da ingestão de cafeína no treino de força

Muito já se falou sobre os efeitos da ingestão de cafeína nos exercícios aeróbicos, como maior concentração, maior taxa de oxidação de gordura, melhora do desempenho. Mas, com a "moda" dos pré-treinos ou "pre-workouts", em que um dos componentes principais é a cafeína, qual seria seu efeito na performance durante o treino de força?
No estudo de Duncan e colaboradores (2011), os indivíduos realizaram um teste de repetição máxima (RM) e repetições até a exaustão a 60% RM. O grupo que utilizou cafeína (5 mg/Kg peso corporal) conseguiu cargas maiores no teste de força máxima, além de mais repetições até a exaustão. Nesse estudo, não houve diferenças na taxa de percepção de esforço.


O mesmo autor, porém em 2013, além de analisar força máxima e resistência, analisou frequência cardíaca, concentração de lactato e percepção de dor. Como no estudo anterior, força máxima e repetições até a exaustão (60% RM) foram maiores no grupo que utilizou cafeína. Porém, as concentrações de lactato e o pico de frequência cardíaca não se diferenciaram entre os grupos, um dado bem interessante sobre a questão do metabolismo energético, principalmente no teste de resistência (ou seja, o número maior de repetições até a exaustão se deu por um maior estímulo da gliconeogênese do lactato ou por outros fatores, não ligados à glicólise anaeróbica?). A percepção de dor foi menor no grupo que utilizou cafeína.
Em 2015, Da Silva e colaboradores, demonstraram que o número total de repetições em 3 séries foi maior no grupo que utilizou cafeína (5 mg/kg peso corporal), porém sem diferenças na percepção de dor.
A cafeína mostra-se então um recurso ergogênico interessante quando se quer aumentar a intensidade do treino de força e as repetições máximas. Muito interessante para quem treina até a exaustão e deseja melhorar a performance. Ainda há alguma discordância no que se refere à percepção de dor, no entanto, sempre quando se vai até a exaustão, a percepção de esforço tende a ser 100%.

Referências:

Da Silva VL, Messias FR, Zanchi NE, Gerlinger-Romero F, Duncan MJ, Guimarães-Ferreira L. Effects of acute caffeine ingestion on resistance training performance and perceptual responses during repeated sets to failure. J Sports Med Phys Fitness. 2015 May; 55(5):383-9.

Duncan MJ1, Oxford SW. The effect of caffeine ingestion on mood state and bench press performance to failure. J Strength Cond Res. 2011 Jan;25(1):178-85.

Duncan MJ1, Stanley M, Parkhouse N, Cook K, Smith M. Acute caffeine ingestion enhances strength performance and reduces perceived exertion and muscle pain perception during resistance exercise. Eur J Sport Sci. 2013;13(4):392-9.



quinta-feira, 20 de agosto de 2015

Séries até a exaustão?

Embora já tenho dito algumas vezes, não custa nada lembrar. Aqui não posto informações baseadas em "achismos" ou porque fulano ou ciclano faz. Isso é papel para blogueiros fitness comuns. Como sou profissional, formado, minha obrigação é informá-los com o que há de mais recente na literatura científica e, de preferência, publicações de impacto internacional.
Vamos falar hoje sobre um artigo que "saiu do forno", publicado agora em Agosto, no Journal of Strength and Conditioning Research. Foi analisada a atividade elétrica dos músculos vasto lateral e medial durante a execução do exercício agachamento em diferentes intensidades.
Os indivíduos realizaram num dia uma série a 50% de uma repetição máxima (RM) até a falha concêntrica (fase positiva do movimento) e, noutro dia, um drop-set a 90, 70 e 50% RM até a falha concêntrica, sem intervalo. Nas duas situações, foram realizadas duas séries submáximas a 50% RM (10 repetições) e a 70% RM (7 repetições) antes das séries máximas.



Em todas as situações onde as repetições foram realizadas até a falha, o sinal elétrico do músculo (eletromiografia) foi maior que as séries sub-máximas. Como era de se esperar, na série até a fadiga realizada a 90% RM, o sinal eletromiográfico foi maior que a 70% e 50% RM.
Então, para um treino intenso, onde se tem por objetivo recrutar o maior número de unidades motoras e fadigar de fato a musculatura, faça as séries até a falha concêntrica. 
Então devo fazer a 90% RM? Não necessariamente, porque aí já estamos falando de cargas, tempo sob tensão e estímulos diferentes. Qual o melhor para hipertrofia muscular? O ideal é variar os estímulos, não deixar seu corpo se acostumar. Para isso, o profissional de Educação Física sabe o que é periodização. E deve-se ter em mente que intensidade é inversamente proporcional ao volume de treino. Logo, se seu treino é intenso, o volume deve ser baixo. Caso contrário, desde se beneficiar com um treino intenso, você pode se prejudicar.

Bons Treinos!

Veja também (só clicar) 

Referência

Looney DP, Kraemer WJ, Joseph MF, Comstock BA, Denegar CR, Flanagan SD, Newton RU, Szivak TK, DuPont WH, Hooper DR, Häkkinen K, Maresh CM. Electromyographical and Perceptual Responses to Different Resistance Intensities in a Squat Protocol: Does Performing Sets to Failure With Light Loads Recruit More Motor Units? J Strength Cond Res. 2015 Aug 10.

terça-feira, 18 de agosto de 2015

Importância da execução do movimento

Já abordei esse assunto aqui no blog, mas não custa nada relembrar. Treino de musculação, visando estresse muscular, hipertrofia deve ser executado com técnica, não apenas levantando o peso de um ponto a outro. O movimento deve ser controlado e deve-se ter percepção do grupo muscular exercitado.

Veja um vídeo de treino de costas e bíceps e outro com o culturista Kai Greene falando sobre a execução do movimento.




E veja o texto sobre a famosa "roubada" nos treinos:






quarta-feira, 12 de agosto de 2015

Treino de Pernas - variável de intensidade

Treino de pernas de hoje com agachamento e leg press de 40 repetições. 
Usando uma carga de 10 a 12 repetições máximas, com intervalo de 15 a 20", fazer as séries até completar o número alvo de repetições. Apenas abaixar a carga quando chegar em 4 repetições. 
OBS.: não faça esse tipo de treino, assim como outros que posto, a sua maneira. Para isso, existe periodização de treinamento, item que apenas um profissional pode elaborar. Você pode ter resultados negativos se aplicar essas variáveis sem conhecimento.

segunda-feira, 3 de agosto de 2015

Consumo de ovos é realmente saudável?

Muito se fala sobre o consumo de ovos. Qual seria o melhor? Jogar a gema fora e consumir apenas a clara? Esse alimento já entrou na lista de vilões, foi absolvido, foi considerado culpado novamente. Mas, afinal, o que diz a ciência e os estudos mais recentes sobre isso?
Além de altamente protéico, rico em todos os aminoácidos essenciais, o ovo é rico em ferro, fósforo, cálcio e vitaminas A, B6 e B12. Mas será possível este alimento estar presente na alimentação todos os dias?


Analisando o efeito da ingesta de 2 ovos/dia em pacientes com diabetes tipo 2 versus o consumo de menos de 2 ovos/semana, Fuller e colaboladores (2015) não encontraram efeitos adversos no perfil lipídico em três meses de experimento. Na amostra de Clayton e colaboradores (2015), que praticavam treinamento de força, o consumo de ovos (2 ovos/dia)além de não provocar efeitos adversos na glicemia e perfil lipídico, melhorou as taxas de triglicerideos quando comparados ao grupo que teve seu café da manhã baseado em pães (feitos com farinha branca). 
Num interessante estudo longitudinal de Robbins e colaboradores (2014), com 1848 pacientes, não foi encontrada associação entre o consumo de ovos (numa média de 1 ovo/semana) e a formação de placas de ateroma. Assim como no estudo de Virtanen e colaboradores (2015)  não foi encontrada associação entre o consumo de ovos e o surgimento de diabetes tipo 2 ou qualquer outra alteração na glicemia, mas pelo contrário, houve uma correlação inversa entre o consumo de ovos, glicemia em jejum e proteína reativa C (marcador de inflamação). Entre os mais recentes estudos, o de Choi e colaboradores (2015)foi um dos poucos que demonstraram associação entre o consumo de ovos (mais de 7/semana) e placas de ateroma. Essa associação foi mais pronunciada entre os participantes que consumiam poucos vegetais (menos fibras na dieta) e que já tinham um alto índice de massa corpórea. Ou seja, pacientes com fatores de risco e, talvez, com alguma progressão do quadro já instalada.
De maneira geral, em pessoas saudáveis e, sobretudo praticantes de atividades físicas, o consumo de ovos, incluindo as gemas, parece não afetar o perfil lipídico. Em alguns casos, é até preferível ao consumo de carboidratos de alto índice glicêmico, como no caso de produtos derivados de farinhas refinadas.

Referências

Choi Y, Chang Y, Lee JE, Chun S, Cho J, Sung E, Suh BS, Rampal S, Zhao D, Zhang Y, Pastor-Barriuso R, Lima JA, Shin H, Ryu S, Guallar E. Egg consumption and coronary artery calcification in asymptomatic men and women. Atherosclerosis. 2015 Aug;241(2):305-12. 

Clayton ZS, Scholar KR, Shelechi M, Hernandez LM, Barber AM, Petrisko YJ, Hooshmand S, Kern M. Influence of resistance training combined with daily consumption of an egg-based or bagel-based breakfast on risk factors for chronic diseases in healthy untrained individuals. J Am Coll Nutr. 2015;34(2):113-9. 

Fuller NR, Caterson ID, Sainsbury A, Denyer G, Fong M, Gerofi J, Baqleh K, Williams KH, Lau NS, Markovic TP. The effect of a high-egg diet on cardiovascular risk factors in people with type 2 diabetes: the Diabetes and Egg (DIABEGG) study-a 3-mo randomized controlled trial .Am J Clin Nutr. 2015 Apr;101(4):705-13.

Robbins JM, Petrone AB, Ellison RC, Hunt SC, Carr JJ, Heiss G, Arnett DK, Gaziano JM, Djoussé L. Association of egg consumption and calcified atherosclerotic plaque in the coronary arteries: the NHLBI Family Heart Study. ESPEN J. 2014 Jun;9(3):e131-e135.

Virtanen JK, Mursu J, Tuomainen TP, Virtanen HE, Voutilainen S. Egg consumption and risk of incident type 2 diabetes in men: the Kuopio Ischaemic Heart Disease Risk Factor Study.Am J Clin Nutr. 2015 May;101(5).


terça-feira, 14 de julho de 2015

Panqueca Fit

Aqui vai uma receita fácil, nutritiva, com muitas vitaminas e fibras. Uma ótima opção para quem tem vontade de comer algo doce, além de poder ser usado como lanche ou pré-treino.

Ingredientes

2 bananas
5 ovos inteiros (ou 7 claras de ovos)
Cacau (ou achocolatado sem açúcar, como Chocolife ou Gold).
Ameixas sem caroço
Adoçante (costumo usar Stevia)
Farinha de aveia ou de arroz
2 scoops de whey protein
Canela, se desejar

Coloque os ovos, a casca das duas bananas e uma banana no liquidificador e bata. Só então coloque o cacau, o whey, 300 mg de farinha de aveia ou de arroz e duas colheres de café de canela. Adoce a gosto. Bata novamente até formar uma massa homogênea. Corte rodelas bem finas com a outra banana e reserve.
Despeje o conteúdo numa frigideira untada ou na omeleteira, coloque as rodelas de banana e as ameixas por cima. Pode polvilhar com mais canela quando estiver pronta, se desejar.



Bom apetite!!!

quarta-feira, 10 de junho de 2015

Panax notoginseng

Panax notoginseng, conhecida por somente por notoginseng, é cultivada na China e na índia. É usada medicinalmente nesses país, conhecida por suas ações antioxidantes e na estabilização da glicemia, diminuindo os níveis de glicose circulante. Por exemplo, no estudo de Gong e colaboradores (1991), a planta desempenhou um papel análogo ao da insulina em ratos diabéticos.


Mas através de quais mecanismos essa diminuição da glicose sanguínea ocorreria? Foi o que demonstrou o estudo de Kim e colaboradores (2009), no qual as sapopinas de Panax notoginseng aumentaram tanto a atividade do Glut4 (transportador de glicose para o interior da celula) muscular), quanto o armazenamento de glicose na forma de glicogênio.
Obviamente que, com essas informações, não iria demorar muito até verficarem as aplicações na performance atlética. O estudo de Zhou e colaboradores (2013) demomstrou maior tolerância ao exercício, postergação da fatiga e aumento do conteúdo de glicogênio no fígado. Mais recentemente, Yong & Jian-jun (2013) verificaram um maior conteúdo de glicogênio muscular e aumento do lactato postergado, retardando a fadiga.
Isso demonstra que a notoginseng pode ser uma boa aliada tanto para o tratamento de diabetes (especialmente do tipo II), como para esportistas, sejam eles saudáveis ou diabéticos. 

Referências:

Gong YH, Jiang JX, Li Z, Zhu LH, Zhang ZZ. Hypoglycemic effect of sanchinoside C1 in alloxan-diabetic mice. Yao Xue Xue Bao. 1991;26(2):81-5.

Yong-xin X1, Jian-jun Z. Evaluation of anti-fatigue activity of total saponins of Radix notoginseng. Indian J Med Res. 2013 Jan;137(1):151-5.

Kim JJ, Xiao H, Tan Y, Wang ZZ, Paul Seale J, Qu X. The effects and mechanism of saponins of Panax notoginseng on glucose metabolism in 3T3-L1 cells. Am J Chin Med. 2009;37(6):1179-89.

Zhou S, Wang Y, Tian H, Huang Q, Gao Y, Zhang G. Anti-fatigue effects of Panax notoginseng in simulation plateau-condition mice. Pharmacogn Mag. 2012 Jul;8(31):197-201.

quinta-feira, 14 de maio de 2015

Fucoxantina e perda de gordura

Hoje vamos falar sobre uma substância presente nas algas pardas ou marrons comestíveis (Wakame, Hijiki e Ma-Kombu), um carotenóide que não é convertido a vitamina A: a fucoxantina.
No que se refere ao uso por humanos. alguns estudos têm demonstrado melhora da saúde cardiovascular geral, com atividade antioxidante e antiinflamatória (através da regulação de células polimorfocelulares, interleucina-1-b, atividade antioxidante nas celulas PC12 sob estresse oxidativo, entre outras), além de contribuir para uma melhor vasodilatação e diminuição da pressão arterial (aumentando a expressão da óxido nítrico sintetase) (Tan & Hou, 2014).


No que se refere ao tratamento da obesidade, ainda temos poucos estudos realizados em humanos. Um deles é o de Abidov (2010), que avaliou mulheres obesas. Além de diminuir o peso corporal e a circunferência abdominal, a fucoxantina contribuiu para diminuir a gordura hepática, triglicerídeos, proteína c-reativa e potencializou a ação do Glut-4 (contribuindo para estabilizar a glicemia).
Um dos mecanismos pelo qual a fucoxantina diminua a gordura corporal seria seu efeito na expressão da proteína desacopladora-1 (UCP-1 ou termogenina) no tecido adiposo branco, liberando energia na forma de calor, oxidando ácidos graxos (Maeda, 2015).
Embora os estudos com a fucoxantina tenham demonstrado resultados promissores, ainda é necessária a consulta de um especialista para seu manejo, principalmente sua combinação com outras substâncias (não se automedique). Entretanto, torna-se uma alternativa interessante para aquelas pessoas com intolerância a substâncias estimulantes, como cafeína ou sinefrina.

Referências:

Abidov M, Ramazanov Z, Seifulla R, Grachev S. The effects of Xanthigen in the weight management of obese premenopausal women with non-alcoholic fatty liver disease and normal liver fat. Diabetes Obes Metab. 2010 Jan;12(1):72-81.

Maeda H. Nutraceutical effects of fucoxanthin for obesity and diabetes therapy: a review. J Oleo Sci. 2015;64(2):125-32. doi: 10.5650

Tan CP1, Hou YH. First evidence for the anti-inflammatory activity of fucoxanthin in high-fat-diet-induced obesity in mice and the antioxidant functions in PC12 cells. Inflammation. 2014 Apr;37(2):443-50.