quinta-feira, 10 de agosto de 2017

Melatonina: benefícios além do sono

Você pensa que a suplementação de melatonina deve ser realizada apenas para pessoas com problemas de insônia? Então lhe digo que você está enganado. Numa rápida revisão sobre o tema em portais de publicações científicas, vemos diversas aplicações, como:
- melhora no sistema antioxidante (Vázquez e colaboradores, 2017), inclusive em pacientes com esclerose múltipla (Miler e coladoradores, 2013); 
- prevenção de doenças neurodegenerativas (Wongprayoon & Govitrapong, 2017; Liu e coladoradores, 2017);
- tratamento de fibromialgia (Favero e colaboradores, 2017) e esteatose hepática (Esrefogl e colaboradores, 2017);
- atua como auxiliar no tratamento de alguns tipos de câncer, como de mama (Gelaleti e colaboradores, 2017), inclusive diminuindo o estresse oxidativo e protegendo o sistema imunológico durante radioterapia (Najafi e colaboradores, 2017). E, já que estamos falando em sistema imunológico, a suplementação de melatonina é um grande aliado (Manka & Majewka, 2016; Ren e colaboradores, 2017), direcionando as pesquisas como coadjuvante no tratamento de soropositivos, visto que seus níveis de melatonina estão diminuídos (Ahmadi e colaboradores, 2017);
- Concomitante à prática de atividade física, no tratamento de diabetes tipo II (Rahman e colaboradores, 2017).


Interessante foi uma publicação recente que me chamou atenção. Leonardo-Mendonça e colaboradores (2017) avaliaram tanto o estresse oxidativo quanto a recuperação muscular de pessoas fisicamente ativas após aumentar a intensidade do treinamento de força. A suplementação de melatonina se mostrou eficiente na proteção contra o estresse oxidativo e na recuperação das microlesões causadas pelo exercício.
E isso foi uma pequena amostra do que se pesquisa sobre melatonina nos últimos anos. Há ainda muitos outros benefícios relatados e a ser investigados. Com isso, a melatonina tem se mostrado uma das suplementações mais benéficas para a saúde geral da população.


Referências

Ahmadi-Motamayel F, Vaziri-Amjad S, Goodarzi MT, Samie L, Poorolajal J. Evaluation of Salivary Melatonin Levels in HIV-positive Patients: A Historical Cohort Study Running title: Salivary melatonin in HIV. Rev Recent Clin Trials. 2017 Jul 25. doi: 10.2174/1574887112666170725132528. [Epub ahead of print]

Esrefoglu M, Cetin A, Taslidere E, Elbe H, Ates B, Tok OE, Aydin MS. Therapeutic effects of melatonin and quercetin in improvement of hepatic steatosis in rats through supression of oxidative damage. Bratisl Lek Listy. 2017;118(6):347-354. doi: 10.4149/BLL_2017_066.

Favero G, Trapletti V, Bonomini F, Stacchiotti A, Lavazza A, Rodella LF, Rezzani R. Oral Supplementation of Melatonin Protects against Fibromyalgia-Related Skeletal Muscle Alterations in Reserpine-Induced Myalgia Rats. Int J Mol Sci. 2017 Jun 29;18(7). pii: E1389. doi: 10.3390/ijms18071389.

Gelaleti GB, Borin TF, Maschio-Signorini LB, Moschetta MG, Jardim-Perassi BV, Calvinho GB, Facchini MC, Viloria-Petit AM, de Campos Zuccari DAP. Efficacy of melatonin, IL-25 and siIL-17B in tumorigenesis-associated properties of breast cancer cell lines. Life Sci. 2017 Aug 15;183:98-109. doi: 10.1016/j.lfs.2017.06.013. Epub 2017 Jun 15.

Leonardo-Mendonça RC, Ocaña-Wilhelmi J, de Haro T, de Teresa-Galván C, Guerra-Hernández E, Rusanova I, Fernández-Ortiz M, Sayed RKA, Escames G, Acuña-Castroviejo D. The benefit of a supplement with the antioxidant melatonin on redox status and muscle damage in resistance-trained athletes. Appl Physiol Nutr Metab. 2017 Jul;42(7):700-707. doi: 10.1139/apnm-2016-0677. Epub 2017 Feb 13.

Liu WC, Wang X, Zhang X, Chen X, Jin X. Melatonin Supplementation, a Strategy to Prevent Neurological Diseases through Maintaining Integrity of Blood Brain Barrier in Old People. Front Aging Neurosci. 2017 May 24;9:165. doi: 10.3389/fnagi.2017.00165. eCollection 2017.

Mańka S, Majewska E. Immunoregulatory action of melatonin. The mechanism of action and the effect on inflammatory cells. Postepy Hig Med Dosw (Online). 2016 Oct 4;70(0):1059-1067.

Miller E, Walczak A, Majsterek, Kędziora J. Melatonin reduces oxidative stress in the erythrocytes of multiple sclerosis patients with secondary progressive clinical course. J Neuroimmunol. 2013 Apr 15;257(1-2):97-101. doi: 10.1016/j.jneuroim.2013.02.012. Epub 2013 Mar 19.

Najafi M, Shirazi A, Motevaseli E, Geraily G, Norouzi F, Heidari M, Rezapoor S. The melatonin immunomodulatory actions in radiotherapy. Biophys Rev. 2017 Apr;9(2):139-148. doi: 10.1007/s12551-017-0256-8. Epub 2017 Mar 27.

Rahman MM, Kwon HS, Kim MJ, Go HK, Oak MH, Kim DH. Melatonin supplementation plus exercise behavior ameliorate insulin resistance, hypertension and fatigue in a rat model of type 2 diabetes mellitus. Biomed Pharmacother. 2017 Aug;92:606-614. doi: 10.1016/j.biopha.2017.05.035. Epub 2017 Jun 1.

Ren W, Liu G, Chen S, Yin J, Wang J, Tan B, Wu G, Bazer FW, Peng Y, Li T, Reiter RJ, Yin Y.Melatonin signaling in T cells: Functions and applications. J Pineal Res. 2017 Apr;62(3). doi: 10.1111/jpi.12394. Epub 2017 Mar 1.

Wongprayoon P, Govitrapong P. Melatonin as a mitochondrial protector in neurodegenerative diseases. Cell Mol Life Sci. 2017 Aug 8. doi: 10.1007/s00018-017-2614-x. [Epub ahead of print] Review.

Vázquez J, González B, Sempere V, Mas A, Torija MJ, Beltran G.  Reduces Oxidative Stress Damage Induced by Hydrogen Peroxide in Saccharomyces cerevisiae.Front Microbiol. 2017 Jun 15;8:1066. doi: 10.3389/fmicb.2017.01066. eCollection 2017.



sexta-feira, 14 de julho de 2017

Posição dos pés influencia a ativação muscular no Agachamento?


Muitos praticantes de musculação, "blogueiros fitness" e até alguns profissionais da área modificam a angulação dos pés no agachamento para variar a ativação muscular, ou como dizem, "para pegar mais determinada musculatura". Como já falei sobre a posição dos pés mais a frente ou recuados, se devem ou não passar da linha dos pés (clique aqui), agora vamos ver o que os estudos eletromiográficos nos demonstram sobre a abertura dos pés? (eletromiografia é uma técnica em que se mede a atividade elétrica do músculo através de eletrodos na superfície da pele ou inseridos no próprio músculo).
O estudo de Murray e colaboradores (2013) avaliaram, através de eletromiografia superficial, a ativação do quadríceps  no agachamento (homens e mulheres) com os pés nas seguintes posições: neutro, rotado internamente, rotado externamente e escalonado - esse último, seria um pé mais a frente do outro). Observaram que apenas a posição escalonada apresentou maior atividade do vasto lateral, medial e reto femural.

Posições dos pés realizadas no estudo de Murray e colaboradores (2013): A - posição neutra; B - rotação interna; C - rotação externa; D - escalonado

Han e colaboradores (2013), também com homens e mulheres, avaliaram as posições dos pés neutra, 30º de adução e 30º de abdução. Novamente, entre essas posições, não houve diferenças de ativação e pico de torque. Entretanto, como a adução e abdução dos pés tendem a proporcionar movimento similar nos joelhos, os autores sugerem a posição neutra na presença de patologias nessa articulação.
Um estudo mais antigo (Hung e cols, 1999) também não encontrou diferenças na ativação do vasto lateral e medial variando a posição dos pés.
Vemos então que apenas a posição escalonada apresentou diferenças de ativação, enquanto os pés em posição neutra, adução ou abdução não apresentaram diferenças em nenhum dos estudos. Apenas no caso de determinadas patologias, onde possa haver um desequilíbrio de forças na estrutura dos joelhos, recomenda-se a posição neutra. Então, vamos parar de querer inventar uma nova roda e complicar em cima de algo que é bem mais simples. Lembrem-se sempre que algumas pessoas querem ganhar dinheiro, fama e ou seguidores em redes sociais, não ligando a mínima para as evidências e, principalmente, sua saúde.

Referências

Murray N, Cipriani D, O'Rand D, Reed-Jones R. Effects of Foot Position during Squatting on the Quadriceps Femoris: An Electromyographic Study. Int J Exerc Sci. 2013 Apr 15;6(2):114-125. eCollection 2013.

Han S, Ge S, Liu H, Liu R. Alterations in Three-dimensional Knee Kinematics and Kinetics during Neutral, Squeeze and Outward Squat. J Hum Kinet. 2013 Dec 31;39:59-66. doi: 10.2478/hukin-2013-0068. eCollection 2013 Dec 18.

McMillian DJ, Rynders ZG, Trudeau TR. Modifying the Functional Movement Screen Deep Squat Test: The Effect of Foot and Arm Positional Variations. J Strength Cond Res. 2016 Apr;30(4):973-9. doi: 10.1519

Hung YJ, Gross MT. Effect of foot position on electromyographic activity of the vastus medialis oblique and vastus lateralis during lower-extremity weight-bearing activities.  J Orthop Sports Phys Ther. 1999 Feb;29(2):93-102; discussion 103-5.

quinta-feira, 6 de julho de 2017

Tempo sob tensão e hipertrofia muscular



Há algum tempo venho insistido no tema e vários estudos recentes estão utilizando essa variável na prescrição do treinamento, que é o tempo sob tensão (TST). Afinal, de onde veio o conceito de "zona de hipertrofia" ser otimizada entre 6-12 repetições? Como músculos não sabem contar, esse conceito veio baseado num tempo médio estipulado por repetição, desde que a série dure entre 30 segundos a 1 minuto e meio em esforço MÁXIMO. Ou seja, uma carga que possibilite a realização de uma série de 30 a 90 segundos até a fadiga concêntrica (fase positiva). Veja aqui o post com gráfico explicando esse conceito.
Como eu sempre digo, fisiculturismo é diferente de halterofilismo. No primeiro, se estimula a musculatura de maneira ótima para o crescimento muscular; enquanto no segundo, o objetivo é levar a maior carga externa do ponto A ao ponto B. E vejo muitas pessoas nas academias em que o tempo sob tensão das séries não ultrapassam 15, 20 segundos.


O estudo de Tran e colaboradores (2006), dividiu os grupos da seguinte maneira, utilizando exercício de flexores do cotovelo:
- Grupo A: carga de 90% de 10 repetições máximas (RM), com 3 séries de 10 repetições e 5 segundos na fase concêntrica e 2 segundos na fase excêntrica. O TST total foi de 210 segundos. 
- Grupo B: a mesma carga e número de séries do grupo A, com 2 segundos em cada fase. O TST total foi de 120 segundos.
- Grupo C: utilizou metade da carga dos protocolos anteriores, com 3 séries de 5 repetições e 10 segundos na fase concêntrica e 4 segundos na fase excêntrica. O TST total foi de 210 segundos.
O protocolo A produziu maior fadiga (queda das propriedades contráteis do músculo) e maior estímulo para hipertrofia muscular. O grupo C produziu bom estímulo para hipertrofia, porém menor do que o grupo A. O grupo B foi o que menos fadigou os músculos e o menos eficiente para estimular a hipertrofia.
Sendo o TST uma variável de volume de treino, podemos observar sua importância nas adaptações do treinamento. Mas então, por quê TST semelhantes produziram resultados diferentes (grupo A e C)?
Esses resultados corroboram com a revisão de Schoenfeld e colaboradores (2015), pois verificaram que repetições com durações entre 0,5 e 8 segundos produzem estímulos para hipertrofia semelhantes e, acima disso, os ganhos são menores. Observem que a duração das repetições do grupo C do estudo de Tran e cols (2006) foi de 14 segundos.
Num estudo mais recente, Burd e colaboradores (2012) avaliaram diferentes TST para uma mesma carga. Foi utilizado um protocolo de 3 séries de extensão de joelhos, porém um grupo utilizou 6 segundos para ambas as fases excêntrica e concêntrica do movimento e outro, 1 segundo para cada fase.
O protocolo mais lento estimulou mais a síntese proteica após o exercício, em torno de 3% em 24 horas pós-exercício. 
Então, para uma mesma carga, uma repetição realizada de maneira controlada pode dobrar o TST de sua série, aumentando o volume de treinamento. Interessante que o TST recomendado para hipertrofia muscular e otimização da síntese proteica é muito maior que boa parte das pessoas realizam e isso pode estar dificultando seus ganhos. Reitero que estamos discutindo otimização de hipertrofia muscular, não estamos dando ênfase em força. 

Referências

Burd NA1, Andrews RJ, West DW, Little JP, Cochran AJ, Hector AJ, Cashaback JG, Gibala MJ, Potvin JR, Baker SK, Phillips SM. Muscle time under tension during resistance exercise stimulates differential muscle protein sub-fractional synthetic responses in men. J Physiol. 2012 Jan 15;590(2):351-62. doi: 10.1113/jphysiol.2011.221200. Epub 2011 Nov 21.

Schoenfeld BJ1, Ogborn DI, Krieger JW.. Effect of repetition duration during resistance training on muscle hypertrophy: a systematic review and meta-analysis. Sports Med. 2015 Apr;45(4):577-85. doi: 10.1007/s40279-015-0304-0.

The effects of varying time under tension and volume load on acute neuromuscular responses. Tran QT1, Docherty D, Behm D. Eur J Appl Physiol. 2006 Nov;98(4):402-10. Epub 2006 Sep 13.



quinta-feira, 22 de junho de 2017

Posicionamento da Sociedade Internacional de Nutrição Esportiva sobre os diferentes tipos de dieta

Cada vez mais, num espaço de tempo menor, surge um ou outro tipo novo de dieta. Porém, trocando em miúdos nada mais é do que uma manipulação, muitas vezes já conhecida, dos macronutrientes. Nesse mês de junho, a Sociedade Internacional de Nutrição Esportiva publicou em seu periódico (Journal of International Society of Sports Nutrition) seu posicionamento sobre os diferentes tipos de dieta na composição corporal.

 A Sociedade Internacional de Nutrição Esportiva (ISSN) baseia sua posição em uma análise crítica da literatura sobre os efeitos dos tipos de dieta (composição de macronutrientes, estilos de alimentação) e sua influência na composição corporal. O ISSN concluiu o seguinte: 
1) Existe uma multiplicidade de tipos de dieta e estilos de alimentação, em que vários subtipos se enquadram em cada um dos principais arquétipos alimentares.
2) Todos os métodos de avaliação da composição corporal têm pontos fortes e limitações.
3) As dietas focadas principalmente na perda de gordura são impulsionadas por um déficit calórico. Quanto maior o nível de gordura corporal inicial, mais agressivo pode ser o déficit calórico imposto. Taxas mais lentas de perda de peso tendem a preservar a massa magra (MM) em indivíduos mais magros.


4) As dietas focadas principalmente no aumento da MM são impulsionadas por um excedente calórico, para facilitar os processos anabólicos e apoiar o aumento das exigências do treinamento de resistência (termo usado em inglês para musculação). A composição e a magnitude do excedente, bem como o status de treinamento dos sujeitos, podem influenciar a natureza dos ganhos. 
5) Uma ampla gama de abordagens dietéticas (baixo teor de gordura ou baixo teor de carboidratos/cetogênicas e todas as variações) podem ser igualmente eficazes para melhorar a composição corporal.
6) O aumento da proteína dietética, em níveis significativamente além das recomendações atuais, para populações fisicamente ativas pode resultar em melhoria da composição corporal. Podem ser necessárias ingestões de proteínas mais elevadas (2,3-3,1 g / kg de massa magra) para maximizar a manutenção da MM em indivíduos magros e treinados sob condições hipocalóricas. Pesquisas emergentes sobre ingestão de proteína muito alta (> 3 g/kg peso corporal) demonstraram que os efeitos térmicos e sobre a massa magra das proteínas amplificam-se em indivíduos submetidos a treinamento de resistência.
7) As pesquisas sobre jejum intermitente não demonstram nenhuma vantagem significativa sobre a restrição calórica diária para melhorar a composição corporal.
8) O sucesso a longo prazo de uma dieta depende da conformidade, supressão ou evasão de fatores atenuantes, como a termogênese adaptativa. 
9) Há uma escassez de pesquisas sobre mulheres e idosos, bem como uma ampla gama de alterações inexploradas sobre freqüência de alimentação e distribuição de macronutrientes em vários saldos energéticos combinados com treinamento. As estratégias comportamentais e de modificação do estilo de vida ainda são áreas pouco pesquisadas no controle de peso.

J Int Soc Sports Nutr. 2017 Jun 14;14:16. doi: 10.1186/s12970-017-0174-y. eCollection 2017.
International society of sports nutrition position stand: diets and body composition.