Mostrando postagens com marcador body Tech. Mostrar todas as postagens
Mostrando postagens com marcador body Tech. Mostrar todas as postagens

terça-feira, 12 de abril de 2016

Agachamento: joelhos não podem passar da linha dos pés?


Você já deve ter ouvido alguma vez na academia ou lido na Internet que, durante o exercício agachamento, seus joelhos não poderiam passar da linha dos pés, evitando assim maior compressão de joelho. Inclusive alegam que o agachamento realizado apoiado na bola suíça deva ser feito por pessoas com condromalacia patelar para preservar os joelhos.
Isso é verdadeiro?
Vamos ver o que a literatura diz.
No estudo de List e colaboradores (2013), compararam a cinemática das pernas, tronco e coluna durante o agachamento restrito (joelhos não poderiam passar da linha dos pés) e irrrestrito (joelhos poderiam passar da linha dos pés). Trinta indivíduos realizaram agachamento livre restrito e irrestrito com uma carga extra de 0, 25 e 50% do peso corporal. No agachamento irrestrito, o ângulo de flexão de joelhos foi maior e a amplitude de movimento entre a região lombar e torácica foram menores que no agachamento restrito. E houve uma maior amplitude de movimento na curvatura da região torácica durante o agachamento restrito. A execução irrestrita conduziu a uma maior amplitude de movimento nos joelhos e pequenas mudanças na curvatura torácica. Esse tipo de execução leva a um menor estresse na coluna, incluindo a região lombar, além de maior fortalecimento dos músculos da coxa (pela maior exigência da musculatura).

O estudo de Fry e colabores (2003) demonstrou que, mesmo havendo um menor estresse nos joelhos durante o agachamento restrito, as forças são distribuídas de forma irregular nos quadris e região lombar, não sendo recomendado restringir o movimento dos joelhos além da linha dos pés (o custo-benefício não compensa a probabilidade de lesão nas regiões lombar e sacra). Para não passar da linha dos pés e equilibrar o centro de gravidade, jogamos o quadril para trás e a cabeça para frente, aumento o estresse nas regiões lombar e sacral. 

Ao restringir o movimento dos joelhos até a linha dos pés, jogamos o quadril para trás e flexionamos mais o tronco, inclinando a cabeça para equilibrar o centro de gravidade.

Ah, e na máquina?
Na máquina, para os joelhos não passarem da linha do joelho (como se observa na figura), aumenta-se de forma significativa o torque nos joelhos, provocando um maior estresse e risco de lesão (Biscarini e colaboradores, 2013). Movimento parecido é realizado com a bola suíça nas costas.

No agachamento na máquina ou na bola suíça, a proposta de não sobrecarregar os joelhos fica totalmente oposta, pois aumenta o torque.

No que se refere à profundidade do exercício, Hartmann e colaboradores (2013) demonstraram que as forças de compressão patelares aumentam até 90 graus, diminuindo a partir desse ponto. Portanto, não se justifica limitar a amplitude de movimento até essa amplitude. Não há correlação entre o agachamento profundo e disfunções como condromalacia patelar, osteoartrite ou osteocondrites. Meniscos, cartilagens, ligamentos e ossos são suscetíveis a adaptações anabólicas com o treinamento, melhorando sua funcionalidade com o treinamento.

Ou seja, o agachamento é um exercício extremamente eficaz tanto no treinamento de diversos esportes quanto em processos de reabilitação. Alguns cuidados devem ser tomados para evitar lesões devido a sua execução inadequada. 

Vamos falar mais sobre agachamento nos próximos posts.



Referências

Biscarini A1, Botti FM, Pettorossi VE. Joint torques and joint reaction forces during squatting with a forward or backward inclined Smith machine. J Appl Biomech. 2013 Feb;29(1):85-97. Epub 2013 Jan 18.

Fry AC, Smith JC, Schilling BK. Effect of knee position on hip and knee torques during the barbell squat. J Strength Cond Res. 2003 Nov;17(4):629-33.

Hartmann H, Wirth K, Klusemann M. Analysis of the load on the knee joint and vertebral column with changes in squatting depth and weight load. Sports Med. 2013 Oct;43(10):993-1008.

List R, Gülay T, Stoop M, Lorenzetti S. Kinematics of the trunk and the lower extremities during restricted and unrestricted squats. J Strength Cond Res. 2013 Jun;27(6):1529-38.

segunda-feira, 14 de março de 2016

Tríceps - exercícios localizados e erros comuns

O tríceps braquial é um músculo situado na parte posterior do braço e possui três cabeças. 
A cabeça longa origina-se no tubérculo infraglenoidal da escápula (em vermelho); a cabeça lateral origina-se na face posterior do úmero, acima do sulco do nervo radial (em amarelo); a cabeça medial, abaixo do sulco do nervo radial (em verde). As três cabeças se inserem no olécrano da ulna.
Atua na extensão do braço (principalmente a cabeça longa) e do antebraço, além de auxiliar a adução do braço e pronação.
Vamos ver dois exercícios comuns realizados para tríceps e os erros mais comuns.



Em ambos os casos, para evitar lesões, estabilize o ombro e concentre o movimento na extensão do cotovelo. Embora a cabeça longa atue na extensão do braço, o objetivo dos dois exercícios é concentrar o esforço somente no tríceps. Utilize toda extensão do movimento (esqueça a história de flexionar os braços até 90 graus) e comprima o tríceps até o ponto máximo de extensão (caso você tenha tendência a hiperextensão, muito cuidado para não realizá-la). Outro erro comum visto é que, ao colocar mais carga do que deveriam, algumas pessoas contraem os ombros, elevando-os (no tríceps roldana ou pulley). Lembre-se, deve-se concentrar o esforço no tríceps. Você não é halterofilista, não há motivo para realizar compensações afim de aumentar a carga. Aumente a carga com a técnica correta.

terça-feira, 8 de março de 2016

Fadiga central e BCAAs

Além dos benefícios conhecidos no estímulo a síntese proteica (clique aqui: 1, 2, 3), os aminoácidos de cadeia ramificada (BCAAs) são recomendados para retardar a fadiga central. E por quê? Com o exercício, há o aumento dos ácidos graxos livres na corrente sanguínea (causado pela lipólise no tecido adiposo). Esses competem com o triptofano ligado à albumina, forçando a um aumento do triptofano na circulação. Ele então ultrapassa a barreira hematoencefálica no cérebro e é convertido a serotonina. A serotonina provoca relaxamento e um alerta no cérebro para cessar a atividade física. Os BCAAs competem com o triptofano pelo transportador na barreira hematoencefálica , diminuindo a entrada de triptofano e, consequentemente, a produção de serotonina,
O SNC possui um papel importante na produção de força. Por exemplo, em indivíduos que iniciam treinamento resistido, os aumentos de força iniciais são muito superiores aos ganhos em massa muscular, indicando uma grande participação dos fatores neurológicos de produção de força nessa fase. Durante as sessões de treino resistido, além da fadiga periférica (depleção de substratos energéticos), há a  fadiga central.


Parece que a depleção de acetilcolina não desempenha papel importante (ela não é completamente depletada e os impulsos nervosos não são bloqueados na junção neuromuscular) (Adam e colaboradores, 2015). O que nos leva a conclusão de que a fadiga central realmente ocorra nas estruturas superiores (córtex pre-frontal, córtex motor, gânglios da base e cerebelo), que são responsáveis pela iniciação e modulação do padrão do movimento (Green, 1997). Há diversas outras substâncias envolvidas na fadiga central, como amônia, óxido nítrico, guanilil ciclase, guanosina cíclica 3,5 monofosfato, entre outras. Como a grande maioria dos estudos envolvendo a produção de serotonina são feitos em exercícios aeróbicos e esse mecanismo demora um pouco mais para atuar, além do substrato energético durante os treinos resistidos não seja predominantemente ácidos graxos, contesta-se o uso de BCAAs no sentido de postergar a fadiga central (vejam bem, não estamos falando de estímulo a síntese proteica). 
A explicação sobre a fadiga central utilizando a produção de serotonina faz sentido em exercícios aeróbicos, onde a mobilização de ácidos graxos como fonte energética faz com que sua concentração aumente na corrente sanguínea durante o exercício. Além disso, por geralmente terem uma duração maior, há tempo para que se sintam os efeitos da serotonina. Treinos resistidos depletam fofocreatina e glicogênio musculares principalmente. Devido a isso, outros mecanismos devem estar relacionados a fadiga central (Adam e colaboradores, 2015),

Referências

Adam Zając, Małgorzata Chalimoniuk, Adam Maszczyk, Artur Gołaś, Józef Lngfortl. Central and Peripheral Fatigue During Resistance Exercise – A Critical Review.  Journal of Human Kinetics vol. 49/2015 in December 2015.

Green HJ. Mechanisms of muscle fatigue in intense exercise. J Sports Sci, 1997; 15: 247-258. 

sexta-feira, 4 de março de 2016

Fadiga Central x Periférica


O maior objetivo dos treinos resistidos (musculação) é o estímulo a adaptações estruturais e funcionais no organismo para melhorar a performance num esporte específico ou promover melhoras na saúde (Adams e colaboradores, 2004). As adaptações aos treinos resistidos ocorrem na recuperação que, se inadequada, pode causar uma fadiga residual, fazendo com que o atleta não alcance a fase de supercompensação após o treino. Quando isso ocorre de forma sistemática, pode levar o atleta ao overtraining (já discutido aqui no blog, parte 01, 02, 03), que é um estado de estresse suprafisiológico ou a incapacidade de adaptação ao treinamento e aumento do desempenho. Em casos extremos pode levar ao que chamamos de Síndrome do Overtraining. A Síndrome do Overtraining é expressada como a inabilidade de treinar intensamente e pode ocorrer sob duas formas clínicas: excitação (forma simpática) ou inibição (forma parassimpática), dependendo do tipo de exercício aplicado (Gandevia, 2001; Enoka & Duchateaus, 2008).


Assim como no treino resistido alguns autores dividem os estímulos em tensionais (maior carga e tempo de tensão menor - número menor de repetições) ou metabólicos (carga menor e tempo de tensão maior), a fadiga pode ser central (Sistema Nervoso Central - quando o cérebro manda um sinal para cessar o exercício) ou periférica (metabólica, com a depleção dos estoques energéticos e acumulação de sub-produtos das contrações musculares - quando se sente a musculatura fadigada) (Finsterer, 2012). Fadiga central e periférica também pode ocorrer nos exercícios aeróbicos. A periférica por depleção de substrato energético muscular; a central por incapacidade de captação e utilização e metabolização do oxigênio captado em intensidades máximas; ou pela produção de serotonina no cérebro em exercícios prolongados).
Os treinos tensionais focariam num aumento de força por adaptações neurológicas e levaria a um aumento do conteúdo proteico no tecido muscular. Os treinos metabólicos aumentariam a resistência de força, a tolerância à acidose metabólica e o conteúdo de glicogênio (e água) muscular.
Seja nos estímulos tensionais como metabólicos, a literatura tem mostrado similares pertubações intramusculares pós-exercício (indicando que não há como isolar cada tipo de treino, apenas dar ênfase em cada fase do treinamento), como depleção de glicogênio intramuscular, fosfocreatina e ATP e aumento de fosfato inorgânico e íons hidrogênio (esse sim causador da fadiga, não o lactato propriamente dito). (Takada e cols, 2012). Especialmente quando a intensidade do exercício alcança ou chega perto das repetições máximas (Tesch e cols, 1986). 
Conhecer os tipos de fadiga e estímulos no treinamento são de extrema importância tanto para realizar a periodização, estabelecer objetivos e uma recuperação adequada ao treinamento quanto estabelecer uma rotina de alimentação e suplementação adequados.

Referências

Adams GR, Cheng DC, Haddad F Baldwin KM. Skeletal muscle hypertrophy in response to isometric, lengthening, and shortening training bouts of equivalent duration. J Appl Physiol, 2004; 96: 1613-1618.

Enoca RM, Duchateau J. Muscle fatigue: what, why and how it influences muscle function. J Physiol, 2008; 586: 11-23.  

Finsterer J. Biomarkers of peripherial muscle fatigue during exercise. BMC Musculoskeletal Disord, 2012; 13: 2018. 

Gandevia SC. Spinal and supraspinal factors in human muscle fatigue. Physiol Rev, 2001; 81: 1725-1789.

Takada S, Okita K, Suga T, Omokawa M, Kadoguchi T, Sato T, Takahashi M, Yokota T, Hirabayashi K, Morita N, Horiuchi M, Kinugawa S, Tsutsui H. Low-intensity exercise can increase muscle mass and strength proportionally to enhanced metabolic stress under ischemic conditions. J Appl Physiol, 2012; 113: 199-205.

Tesch PA, Colliander EB, Kaiser P. Muscle metabolism during intense, heavy-resistance exercise. Eur J Appl Physiol Occup Physiol, 1986; 55: 362-366. 

terça-feira, 1 de março de 2016

Por que a patela é importante?

A patela é um osso sesamóide, de formato triangular, localizado na parte anterior do joelho. Possui no pólo superior a inserção da musculatura anterior da coxa (quadríceps) e no pólo distal, a origem do ligamento patelar. Além de proteger as estruturas internas, atua como uma roldana, potencializando a força do quadríceps na extensão do joelho, aumentando seu torque mecânico.
Há alguns anos, quando não se sabia sua função, era mais constante retirar a patela quando a mesma apresentava algum problema. Atualmente, apenas em último caso.

Olhem esse gif animado sobre a função da patela e, logo após, o vídeo:




terça-feira, 23 de fevereiro de 2016

Bíceps Scott e risco de lesão com a "roubadinha"


O músculo bíceps braquial possui duas cabeças, com duas origens. A porção longa se origina no tubérculo supraglenoidal; a curta, no processo coracóide. Sua inserção é na tuberosidade do rádio. Possuindo como função a flexão do cotovelo e auxilia a supinação. Devido seus pontos de origem, algumas maneiras de fazer certos exercícios requerem cuidado, sobretudo quando as pessoas insistem em colocar mais peso do que deveriam. 


Primeiramente, gostaria que o leitor entendesse que, para um treino de hipertrofia, deve-se estressar a musculatura ao máximo. E, muitas vezes, com a técnica de execução prejudicada devido a uma sobrecarga, embora a carga externa seja maior, a que chega ao músculo pode ser menor. 
Vamos ver esse vídeo sobre a execução do "bíceps scott". O objetivo do exercício é isolar ao máximo possível a flexão do cotovelo, mas obviamente algumas pessoas inventam de compensar com o ombro. ERRADO. Além de diminuir a amplitude de movimento do que interessa (flexão de cotovelo), há um sério risco de lesão, especialmente na inserção da cabeça longa do bíceps. 
Portanto, parem de querer treinar para os outros. Treinem para si.
Parabéns Muscle & Motion pelo vídeo.


segunda-feira, 22 de fevereiro de 2016

Pilates é realmente eficiente para dor lombar?

No segmento fitness, sempre aparecem métodos que se auto-proclamam eficientes para determinado nicho. Já falei aqui sobre treinamento funcional com kettlebells, Crossfit e agora vamos falar sobre o Pilates. Mais especificamente sobre seus "poderes" sobre dores lombares.
Para os leigos, meta-análise é, basicamente, quando um pesquisador utiliza resultados de diversos estudos, normalmente com uma população de perfil semelhante e, através de análises estatísticas, chegam a uma conclusão. Esse método é muito interessante quando se utilizam dados de diferentes populações e localidades, ou quando os estudos sobre determinado assunto possuem uma amostra reduzida.


Entendido isso, vamos para duas meta-análises. Em 2012, Pereira e colaboradores demonstraram que o método Pilates não apresentou melhoras superiores em relação a outros exercícios de estabilização lombar, tanto na dor quanto na funcionalidade da região. E ainda assim os pesquisadores chamaram atenção para a baixa qualidade das evidências.
Em 2015, Yamato e colaboradores realizaram outra meta-análise, igualmente chamando atenção para a qualidade das evidências dos estudos, indo de baixa a moderada. Os autores concluíram que o método Pilates possui algum efeito na melhora da dor lombar em relação a intervenções mínimas, mas ainda não é claro sua maior efetividade em relação a outros tipos de exercícios.
Como eu disse, no fitness sempre aparecem métodos prometendo milagres. Qualquer atividade física é melhor que nada, claro. Mas, em alguns casos, há a necessidade de um trabalho mais intenso de acordo com a necessidade do paciente. Não vamos prescrever exercícios de acordo com o "senso comum", mas baseados em evidências.

Referências

Yamato TP, Maher CG, Saragiotto BT, Hancock MJ, Ostelo RW, Cabral CM, Costa LC, Costa LO. Pilates for Low Back Pain: Complete Republication of a Cochrane Review. Spine (Phila Pa 1976). 2015 Dec 14. 

Pereira LM, Obara K, Dias JM, Menacho MO, Guariglia DA, Schiavoni D, Pereira HM, Cardoso JR. Comparing the Pilates method with no exercise or lumbar stabilization for pain and functionality in patients with chronic low back pain: systematic review and meta-analysis. Clin Rehabil. 2012 Jan;26(1):10-20. . 

quinta-feira, 18 de fevereiro de 2016

Ativação muscular e instrução profissional

A presença de um profissional de educação física, formado, não se torna importante apenas na formulação de uma periodização eficiente, a fim de evitar lesões e sobretreinamento, melhores resultados, dedicação maior do aluno, entre outros. Mas também na própria ativação muscular durante um treino de musculação. Sim!



O estudo de Snyder e Leech (2012) avaliou mulheres sedentárias, sem experiência no treino resistido com pesos nas seguintes situações durante o exercício puxada alta pela frente: 

1 - Com apenas as instruções básicas, pediram para elas executarem, sob avaliação eletromiográfica (mede a atividade do músculo). 

2 - Após um intervalo, foram dadas as seguintes instruções: que concentrassem o movimento na adução do ombros, ao invés de simplesmente puxarem a barra; foi falado sobre o músculo em questão (grande dorsal), que inclusive foi tocado. 

Após as instruções, a amostra executou novamente o exercício e houve maior ativação do grande dorsal, sem alterações no bíceps braquial.
Observo isso constantemente nas academias. Boa parte dos praticantes não sabem treinar dorsais! Basta ver o padrão de execução, principalmente na ânsia de colocarem mais peso, comprometem a ativação do músculo alvo e a amplitude de movimento.

Referência
Snyder BJ, Leech JR. Voluntary increase in latissimus dorsi muscle activity during the lat pull-down following expert instruction. J Strength Cond Res. 2009 Nov;23(8):2204-9. 

terça-feira, 22 de dezembro de 2015

É obrigatório usar carboidratos com whey?

É bem sabido que a ingestão de proteínas (como o whey protein) associado ao treinamento de força, provoca adaptações benéficas, como o aumento de massa magra e diminuição de gordura, inclusive abdominal (Sousa e colaboradores, 2012).
Com relação à suplementação de proteínas, há controvérsias sobre o uso concomitante ou não de carboidratos. Num post anterior (clique aqui), verificamos que a ingestão de carboidratos possui pouco efeito no estímulo agudo (imediatamente pós-treino) à síntese proteica. 


O recente estudo de Hulmi e colaboradores (2015) submeteram uma amostra de 78 indivíduos a 4 semanas de treino de força para adaptação e a mais 12 semanas de treinamento de hipertrofia, força, e potência. Nessas 12 semanas de treino, a amostra foi dividida em grupos de suplementação isocalórica (mesma quantidade de calorias) de carboidratos, carboidratos+proteína e proteína. Em todos os grupos houve aumento de massa magra e força, independente da suplementação. Contudo, a suplementação com whey sozinha reduziu gordura total e abdominal, levando a um aumento relativo de massa livre de gordura maior. Não houve diferenças no perfil lipídico sanguíneo.
No que se refere à massa magra, imediatamente pós-treino, a suplementação concomitante de carboidratos parece não estimular de forma adicional a síntese proteica. Até porque a "janela" para otimização da síntese de glicogênio permanece por algumas horas após o treino (clique aqui). Apenas devendo observar o índice glicêmico dos carboidratos, dependendo do momento da ingestão. Independentemente, consulte seu nutricionista ou nutrólogo e discutam seus objetivos.

Referências

Hulmi JJ, Laakso M, Mero AA, Häkkinen K, Ahtiainen JP, Peltonen H. The effects of whey protein with or without carbohydrates on resistance training adaptations. J Int Soc Sports Nutr. 2015 Dec 16;12:48.

Sousa GT, Lira FS, Rosa JC, de Oliveira EP, Oyama LM, Santos RV, et al. Dietary whey protein lessens several risk factors for metabolic diseases: a review. Lipids Health Dis. 2012;11:67

quinta-feira, 17 de dezembro de 2015

Outros achados sobre a suplementação de leucina

Muito se tem falado nos benefícios da suplementação de leucina (um dos aminoácidos que faz parte dos BCAAs) na massa muscular, inclusive em idosos (Casperson, 2012). Porém, novos estudos têm aparecido sinalizando novas aplicações para essa estratégia nutricional e também corroborar com o que já tem sido estudado. No estudo de Chen e colaboradores (2012), por exemplo, a suplementação de leucina melhorou tanto o transporte de glicose quanto a oxidação periférica de gordura.


Num estudo mais recente, publicado em dezembro de 2012, Laboute e colaboradores utilizaram a suplementação de leucina na recuperação de atletas com lesão no ligamento cruzado anterior. A reabilitação por si só melhorou todos os parâmetros de força e massa muscular no membro lesionado. Entretanto, o grupo que utilizou concomitantemente a suplementação de leucina, apresentou melhoras em maior magnitude na força e, sobretudo, no diâmetro do membro lesionado. Ou seja, essa estratégia nutricional consegue manter com mais eficácia a massa magra após uma lesão.

Referências

Casperson SL, Sheffield-Moore M, Hewlings SJ, Paddon-Jones D. Leucine supplementation chronically improves muscle protein synthesis in older adults consuming the RDA for protein. Clin Nutr. 2012 Aug;31(4):512-9. doi: 10.1016/j.clnu.2012.01.005. Epub 2012 Feb 20.

Chen H, Simar D, Ting JH, Erkelens JR, Morris MJ. Leucine improves glucose and lipid status in offspring from obese dams, dependent on diet type, but not caloric intake. J Neuroendocrinol. 2012 Oct;24(10):1356-64.

Laboute E, France J, Trouve P, Puig PL, Boireau M, Blanchard A. Rehabilitation and leucine supplementation as possible contributors to an athlete's muscle strength in the reathletization phase following anterior cruciate ligament surgery. Ann Phys Rehabil Med. 2012 Dec 6. pii: S1877-0657(12)01302-4. doi: 10.1016

terça-feira, 15 de dezembro de 2015

Suplementação de leucina e treinamento intenso


(Veja também sobre leucina clicando aqui)

Leucina, isoleucina e valina, os aminoácidos de cadeia ramificada (BCAA), compõem cerca de um terço das proteínas musculares. Desses aminoácidos, a leucina tem sido a mais estudada devido sua taxa de oxidação ser maior que da isoleucina ou da valina. A leucina também estimula a síntese proteica e está intimamente associada com a liberação de precursores da gliconeogênese muscular (conversão de aminoácidos em glicose), como a alanina. Uma diminuição significante nos níveis plasmáticos ou séricos de leucina ocorre após sessões de atividades aeróbicas (11 a 33%), anaeróbicas láticas (5 a 8%) e treinamento de força (30%). No músculo esquelético, há uma diminuição nos níveis de leucina e uma redução nos estoques de glicogênio durante o exercício aeróbico exaustivo.
Os níveis séricos basais de leucina em jejum diminuem em 20% durante 5 semanas de treinamento de velocidade e de força em atletas treinados, adotando uma ingestão protéica de 1,26g/Kg do peso corporal. O conteúdo de leucina nas proteínas variam entre 5 e 10%. Há sugestões de que a ingestão recomendada de leucina na dieta atualmente será aumentada de 14 mg/kg do peso corporal/dia para um mínimo de 45 mg/kg do peso corporal/dia para indivíduos sedentários, e maior para aqueles que treinam intensamente, a fim de otimizar as taxa de síntese proteica corporal.


O consumo de BCAA (30-35% de leucina) antes ou durante o exercício aeróbico pode prevenir ou diminuir a taxa líquida de degradação proteica, melhorar a performance física e mental e ter um efeito poupador na degradação de glicogênio muscular. Contudo, a suplementação de leucina (200mg/kg do peso corporal) 50 minutos antes do exercício aeróbico não apresentou efeitos na performance. Durante 5 semanas de treino de força e velocidade, a suplementação de leucina em 50 mg/Kg do peso corporal/dia, com uma ingestão proteica em 1,26g/Kg do peso corporal/dia, parece prevenir a diminuição dos níveis de leucina em atletas treinados. A suplementação de um metabólito da leucina, o beta-hydroxi-beta-metilbutirato (HMB), 3g/dia em humanos que realizavam um intenso treino de força resultou em aumentos na massa livre de gordura, além de melhoras nos níveis de força. A quebra de proteína muscular (proteólise) também diminuiu com o HMB, acompanhado de níveis mais baixos de enzimas marcadoras de lesão muscular e de aminoácidos essenciais no plasma (em torno de 50%) no plasma (indicando menor degradação proteica).
Além disso, a suplementação de BCAA (76% de leucina) em combinação com restrição energética moderada tem mostrado induzir a uma significante e perda preferencial de tecido adiposo visceral e permite uma manutenção de um alto nível de performance física. Atenção deve ser dada ao interpretar o número limitado de estudos nessa área, uma vez que, em muitos deles, a leucina foi completada como parte de uma mistura de BCAA. Consequentemente, mais investigações sobre os efeitos da suplementação isolada de leucina se fazem necessárias.

Comentário:
- O artigo citado mostra diversos benefícios da suplementação de leucina, além da sua concentração no tecido muscular. Com isso, verifica-se a importância da ingestão desse aminoácido, assim como todos os aminoácidos de cadeia ramificada, ou seja, aqueles que o músculo utiliza preferencialmente como fonte de energia. O único momento em que a suplementação de leucina não se mostrou eficaz foi durante os exercícios aeróbicos, excetuando quando combinado com outros aminoácidos de cadeia ramificada, já que a suplementação de BCAA melhorou performance física e mental, além de poupar o glicogênio muscular durante atividades aeróbicas. Os maiores benefícios na suplementação de leucina se dão nos atletas de força e velocidade, demonstrando diminuição da degradação protéica, poupando proteína muscular durante o exercício e na recuperação e, como consequência, aumentos na massa magra e força muscular.

Referência
Mero A. Leucine supplementation and intensive training.  Sports Med. 1999 Jun;27(6):347-58.

quinta-feira, 10 de dezembro de 2015

Invenções sem utilidade: inclinação lateral com halteres para abdominais

Vejo muitas pessoas fazerem e professores prescreverem esse exercício com o intuito de trabalhar os músculos oblíquos. Então, vou descrever alguns tópicos para desmistificar alguns pontos:

- Para iniciantes já aviso, ele não queima gordura localizada. Você pode ficar horas fazendo esse exercício que ganhará, no máximo, uma protusão discal;
- os oblíquos externos realizam inclinação lateral? Sim, mas a ativação desses músculos nesse movimento é de uma amplitude muito pequena. Ele somente perturba o músculo, como se você estivesse carregando uma sacola. Além disso, pela coluna não estar em posição neutra, diminui a capacidade dos músculos frearem o movimento;
- então posso fazer com uma carga menor com mais segurança? Ora, se temos outras opções para fazer com intensidade maior, por quê perder tempo?
- os oblíquos nem são os motores primários na inclinação lateral, os externos são bem mais ativados na flexão do tronco (o abdominal tradicional) e os internos, na rotação. Você acaba ativando muito mais o quadrado lombar.

Conclusão simples e direta: há diversas opções melhores para os oblíquos, delete esse exercício.



Referência

HAMILL, Joseph; KNUTZEN, Kathleen. Bases biomecânicas do movimento humano. 2. ed. Barueri, SP: Manole, 2008.

quarta-feira, 9 de dezembro de 2015

Invenções sem utilidade: o agachamento na cadeira abdutora


Eu adoraria que as pessoas usassem a criatividade usando bases biomecânicas para tal. Outro dia vi professores prescrevendo agachamento na cadeira abdutora. Será que há maior aplicação de carga nos músculos envolvidos no exercício agachamento?

Vou fazer um exercício com vocês. Durante o agachamento a aplicação da carga seja da máquina, seja da barra ou do hack é para baixo. Ou seja, caso você não faça força contrária, irá para o chão, certo? Você é forçado a sentar e precisa levantar.



Na cadeira abdutora, ao se posicionar de pé, seria como algo estivesse lhe apertando para ser ejetado da cadeira, certo? Caso você segure com força um sabonete molhado em sua base, o que acontece com ele? Sai de suas mãos para cima. Nesse exercício, você faz força para sentar, não para levantar!

Então, se a tendência do movimento seria empurrar você para cima, por qual motivo se prescreve um agachamento na cadeira abdutora? 
Impressionar o aluno? Achar que está fazendo algo de diferente? Faça algo de diferente, mas pensem antes. 

quinta-feira, 3 de dezembro de 2015

Oclusão vascular e a importância da fadiga muscular: estudos recentes

Já comentei aqui no blog algumas vezes sobre a importância da fadiga para otimizar os ganhos de força e hipertrofia muscular (clique aqui: 1, 2, 3, 4, 5) Nas últimas repetições, o corpo recruta o máximo de unidades motoras possíveis para executar o movimento (o que chamamos de "princípio do tamanho).



Alguns estudos inclusive não demonstraram diferenças em hipertrofia muscular se o exercício foi executado com cargas maiores ou menores, desde que seja executado até a falha concêntrica. E algumas técnicas têm sido elaboradas para otimizar os resultados do treinamento de força com cargas menores, como a oclusão vascular (clique aqui: 1, 2, 3, 4, 5, 6, 7)
Por exemplo, no recente estudo de Lixandrão e colaboradores (2015), os grupos com oclusão vascular treinaram a 20 e a 40% RM, com 40 ou 80% de oclusão em cada grupo. Em cargas muito baixas (20%RM), a oclusão de 80% influenciou os ganhos de força e massa muscular. Porém, a 40% RM, não houve diferenças entre 40 e 80% de oclusão. O grupo que treinou de maneira tradicional (80% RM) apresentou maiores ganhos de força, mas não houve diferenças nos ganhos de massa magra.
Noutro estudo recente, de Farup e colaboradores (2015), utilizaram 40% RM num braço com oclusão e noutro braço sem oclusão. As séries foram realizadas até a fadiga total. Nas duas condições, o aumento de massa muscular foi semelhante, sem diferenças no conteúdo de água. Ou seja, até em cargas mais baixas, a fadiga muscular influencia mais que a oclusão vascular.
Então posso treinar somente com cargas mais leves? Caso não seja recomendação médica, não. E quem nunca treinou intensamente com cargas menores não sabe o quanto arde e provoca acidose ir até a fadiga. Deve-se periodizar o treino. E, para isso, chame um profissional.


Referências:

Farup J, de Paoli F, Bjerg K, Riis S, Ringgard S, Vissing K. Blood flow restricted and traditional resistance training performed to fatigue produce equal muscle hypertrophy. Scand J Med Sci Sports. 2015 Dec;25(6):754-63. doi: 10.1111/sms.12396. Epub 2015 Jan 21.

Lixandrão M, Ugrinowitsch C, Laurentino G, Libardi CA, Aihara AY, Cardoso FN, Tricoli V, Roschel H. Effects of exercise intensity and occlusion pressure after 12 weeks of resistance training with blood-flow restriction. Eur J Appl Physiol. 2015 Dec;115(12):2471-80. doi: 10.1007/s00421-015-3253-2. Epub 2015 Sep 1.

terça-feira, 1 de dezembro de 2015

Crossfit: evidências, segurança e resultados.


Percebe-se hoje uma crescente febre no mercado fitness pelo que chama-se Crossfit. Para quem não conhece ainda, trata-se de um treinamento não tradicional, que não possui intenção de trabalhar de forma específica. Seu criador, o treinador Greg Glassman, fundamentou a metodologia em três pilares: variação, intensidade e funcionalidade. Além disso, há uma rotina de treino diversificada. Ou seja, o indivíduo vai treinar sem saber como será a sessão de treino, o chamado "Work of day" (WOD). 
Deve-se lembrar que Greg baseou sua metodologia empiricamente, através de suas observações na prática. Isso remete a sua adolescência, onde tinha alguns conflitos com o pai (um pesquisador), com o qual qualquer discussão formal tornava um debate acadêmico.
Pelo empirismo, questiona-se a segurança. Um recente estudo reportou a incidência de 20% de lesões entre os praticantes de Crossfit (Weisenthal, 2014). As lesões se concentraram nos ombros, lombar e joelhos. Hak e colaboradores observaram uma incidência de 3,1 lesões a cada 1000 horas de treino. Para efeitos de comparação, no estudo de Siewe e colaboradores (2014), o índice de lesões entre fisiculturistas de elite (não recreacionais, como a maioria das pessoas) foi de 0,24 a cada 1000 horas de treino.
Partridge e colaboradores observaram um ambiente motivacional, com diferença entre os gêneros. Os homens se motivavam pelo treinamento através da competição; as mulheres, pela auto superação, de irem melhores a cada treino. Após 6 meses de treinamento, independente do gênero, ambos se motivavam pela questão competitiva. Obviamente, isso se torna um fator importante motivacional. Porém, a preocupação seria se essa motivação competitiva não poderia afetar a técnica de execução dos exercícios.
Com relação ao estresse oxidativo, Kliszczewicz e colaboradores (2015) não demonstraram diferenças entre o Crossfit e um treino aeróbico tradicional em esteira.
Houve também um caso famoso descrito na literatura de rabdomiólise (alta concentração sanguínea de creatina quinase, sinalizando excesso de estresse muscular; podendo levar a complicações metabólicas severas, incluindo lesão renal aguda) num praticante de crossfit (Hadeed e colaboradores, 2011). O paciente tinha 33 anos e deu entrada no hospital após uma sessão de treino Crossfit. O mesmo já vinha apresentando falta de ar, fraqueza muscular e distúrbios de sono. Os valores de creatina quinase ficaram em 26000 IU/L, enquanto os valores normais ficam abaixo de 200 IU/L. Em seis dias, o paciente teve alta do hospital e retornou aos treinos 4 meses sob orientação profissional.

Quanto à eficácia? Ainda há dados escassos na literatura sobre a eficácia. No estudo de Smith e colaboradores (2013), houve aumento no consumo máximo de oxigênio e perda de gordura. Uma das limitações desse estudo foi o fato da amostra ter sido submetida à dieta do Paleolítico sem algum grupo controle, dificultando mensurar os efeitos de cada uma das variáveis separadamente.  
Eather e colaboradores (2015) avaliaram adolescentes e observaram perda da circunferência abdominal, diminuição do índice de massa corporal, melhora da capacidade cardiorrespiratória e muscular. Como as medidas de aptidão física nesse estudo foram a partir de testes indiretos e não houve mensuração da composição corporal, ainda faltam estudos que avaliem essas variáveis através de métodos padrão-ouro e com grupos controle, a fim de analisarmos mais precisamente a eficácia da metodologia Crossfit.


Minha maior crítica à metologia refere-se ao fato de não haver periodização, controle, planejamento e variação de cargas, tempo sob tensão. O fato de cada sessão de treino ser diferente, é ótimo e constitui-se num fator motivacional. Porém, metabolicamente falando, não há um planejamento. Além de se trabalhar intensamente o corpo inteiro em cada sessão, fica a dúvida se há recuperação muscular eficiente quando se realiza a sessão seguinte de treinamento, podendo levar a um quadro de sobretreinamento (overtraining - clique para saber mais: 1, 2, 3) e possíveis lesões (em casos mais graves, rabdomiólise). Como treinador, sou a favor e utilizo diversos movimentos que se utilizam no Crossfit. Porém, nem todas pessoas possuem técnica e estrutura corporal para realizar alguns movimentos complexos até a fadiga total, não tendo realizado um treinamento de base. Em alguns casos, a técnica pode ser prejudicada. 
Estou dizendo que o Crossfit é ruim? Não, pelo contrário. Também utilizo algumas bases que ele também utiliza. Pela motivação, algumas pessoas passam a realmente treinar intensamente e, claro, passam a obter o resultado que não conseguiam com a musculação, por exemplo (mas, se treinassem tão intensamente na musculação, poderiam ter o mesmo resultado). Minhas críticas remetem à questão de periodizar o treino e à recuperação muscular, justamente os fatores que podem acentuar o índice de lesões. Como toda metodologia, ainda mais feita empiricamente, está passível de críticas e ajustes.

Referências:

Eather N, Morgan PJ, Lubans DR. Improving health-related fitness in adolescents: the CrossFit Teens™ randomised controlled trial. J Sports Sci. 2015 May 14:1-15.

Hadeed, M.J., Kuehl, K.S., Elliot, D.L., Sleigh, A. Exertional Rhabdomyolysis after Crossfit exercise Program. Medicine and Science in Sports and exercise, 2011 43(5):224-225.

Hak, P.T., Hodzovic, E., Hickey, B. The nature and prevalence of injury during Crossfit training. Journal of strenght and conditioning research. 2013.

Kliszczewicz B, Quindry CJ, Blessing LD, Oliver DG, Esco RM, Taylor JK. Acute Exercise and Oxidative Stress: CrossFit(™) vs. Treadmill Bout. J Hum Kinet. 2015 Oct 14;47:81-90.

Partridge, Julie A., Bobbi A. Knapp, Brittany D. Massengale. An investigation of motivational variabçes in Crossfit and weight trained individuals. Medicine and science in sports and exercise, 45(5):530.

Siewe J, Marx G, Knöll P, Eysel P, Zarghooni K, Graf M, Herren C, Sobottke R, Michael J. Injury Rate and Patterns Among CrossFit Athletes. Orthop J Sports Med. 2014 Apr 25;2(4):232.

Smith, Michael M., et al. Crossfit-based high intensity power training improves maximal aerobic fitness and body composition. The Journal of Strength and Conditioning research, 2013 27(11):3159-3172.

Weisenthal BM, Beck C.A., Maloney, DeHaven KE, Giordano BD. Injuries and overuse syndromes in competitive and elite bodybuilding. Int J Sports Med. 2014 Oct;35(11):943-8. doi: 10.1055/s-0034-1367049. Epub 2014 Jun 2.


domingo, 29 de novembro de 2015

Circuito em alta intensidade

Circuito em alta intensidade até a falha em todos os exercícios.
Além de trabalhar força e resistência anaeróbica, consegue-se melhorar a capacidade cardiovascular.


Levantamento terra (140 kg), desenvolvimento de pé frontal (40 Kg), Desenvolvimento frontal com anilha (20 Kg) e elevação lateral com halteres (12 kg).

terça-feira, 24 de novembro de 2015

Treino com carga tensional - vídeo

Com o envelhecimento. apresentamos perda da massa, força e função musculares (sarcopenia). Esse processo acontece muito mais cedo do que você imagina, sobretudo em indivíduos sedentários.
Por isso, na periodização do treino de força, é importante darmos espaço para estímulos tensionais.


Aqui, um dos primeiros textos do blog onde falo sobre função muscular.

quarta-feira, 18 de novembro de 2015

Waxy Maze, Maltodextrina ou Dextrose?

Como abordei no post anterior, no período pós-treino é interessante a ingestão de carboidratos para a reposição de glicogênio muscular e hepático. No mercado de suplementos, por exemplo, há algumas opções que podem fazer as pessoas se confundirem ou não entenderem o porquê de seu nutricionista/nutrólogo ter escolhido determinada opção. Eis as opções:


Maltodextrina
É um carboidrato complexo, ou seja, possui absorção gradativa pelo organismo e não provoca um grande pico de insulina. Ela é extraída a partir da quebra enzimática de moléculas de amido de milho. Interessante tanto para pós-treino quando antes do treino, afim de manter o desempenho.

Dextrose
Ao contrário da maltodextrina, a dextrose é um carboidrato simples, de absorção rápida e provoca um pico de insulina maior. Como fornece energia de maneira rápida, é uma opção interessante pós-treino.

Waxy Maize
É um carboidrato de baixo índice glicêmico, extraído a partir do amido de milho ceroso (principal forma de armazenamento de carboidrato nos vegetais). Sua absorção é mais lenta e, portanto, provoca um pico de insulina mais baixo que a maltodextrina e a dextrose.

A prescrição de cada suplemento varia de acordo com seu índice glicêmico e seu impacto na glicemia. Vejamos o que os experimentos demonstram.

Roberts e colaboradores (2011) compararam os efeitos da ingestão de maltodextrina e waxy maize nas repostas metabólicas e hormonais após um jejum de 10 horas e 150 minutos de exercício em cicloergômetro a 70% VO2máx., completando o protocolo a 100% do VO2máx, A amostra era composta por 9 ciclistas treinados. Os participantes ingeriram 1g/Kg de waxy maize ou maltodextrina 30 minutos antes e 10 minutos após terem completado o protocolo. Como esperado, a glicemia aumentou mais no grupo que ingeriu maltodextrina. Os níveis de insulina foram menores no grupo que ingeriu waxy maize, assim como apresentaram uma mobilização maior de gordura após o exercício.
Em 1996, Jozsi e colaboradores também utilizaram ciclistas (oito). Eles foram submetidos a um protocolo de 60 minutos a 75% VO2máx, seguido de 6 sprints de 1 minuto a 125% VO2máx., com 1 minuto de intervalo. Doze horas após o protocolo, os indivíduos consumiram 3000 Kcal (65% de carboidrato). Todo carboidrato consumido foi nas seguintes formas: glicose, maltodextrina, waxy maze e amido resistente (100% amilose). Todos os grupos tiveram seus estoques de glicogênio aumentados após 24 horas, exceto o grupo que ingeriu amido resistente (ressaltando que o grupo que ingeriu glicose apresentou maior concentração de glicogênio muscular).

Sem nenhum protocolo de exercício, Gentile e colaboradores (2015) investigaram os efeitos no metabolismo da ingestão de waxy maze, waxy maze com whey protein, amido resistente e amido resistente com whey protein. O gasto energético pós-prandial não diferiu entre os grupos, porém no grupo que consumiu amido resistente com whey protein, a oxidação de gordura foi maior (isso demonstra o maior efeito térmico das proteínas, mas será assunto para outro post).
A partir desses estudos, podemos verificar que, quanto maior o índice glicêmico do carboidrato pós-treino, realmente a ressíntese de glicogênio vai ser maior. Porém, a taxa de oxidação de gordura pós-exercício vai ser menor. Então, vai depender do objetivo principal, se aumento de desempenho ou massa muscular, a tendência seria escolher uma dextrose. Caso o objetivo principal seja a perda de gordura, muito cuidado com alimentos com alto índice glicêmico, prefira os com menor IG. Vale lembrar que o consumo apenas de amido resistente pode prejudicar a ressíntese de glicogênio e, consequentemente, o desempenho nos treinos. Converse com seu nutricionista/nutrólogo e vejam qual a quantidade e escolha melhor para seu caso.

Referências:
Gentile CL, Ward E, Holst JJ, Astrup A, Ormsbee MJ, Connelly S, Arciero PJ. Resistant starch and protein intake enhances fat oxidation and feelings of fullness in lean and overweight/obese women. Nutr J. 2015 Oct 29;14(1):113. doi: 10.1186/s12937-015-0104-2.

Jozsi AC, Trappe TA, Starling RD, Goodpaster B, Trappe SW, Fink WJ, Costill DL. The influence of starch structure on glycogen resynthesis and subsequent cycling performance. Int J Sports Med. 1996 Jul;17(5):373-8.

Roberts MD, Lockwood C, Dalbo VJ, Volek J, Kerksick CM. Ingestion of a high-molecular-weight hydrothermally modified waxy maize starch alters metabolic responses to prolonged exercise in trained cyclists. Nutrition. 2011 Jun;27(6):659-65. doi: 10.1016/j.nut.2010.07.008. Epub 2010 Oct 15.

quinta-feira, 12 de novembro de 2015

A utilização e reposição de glicose pelo organismo


Em atividades intensas, entre 20 segundos e 5 minutos de esforço máximo (uma intensidade em que você não consiga manter por mais de 20 segundos ou 5 minutos, por exemplo), utilizamos a glicose de forma anaeróbia como fonte de energia predominante. Então ocorre o acúmulo de lactato, os íons hidrogênio acidificam o meio biológico, entramos em fadiga (sentindo uma certa "ardência" no tecido muscular) e inciamos uma hiperventilação. Essa glicose provém principalmente do glicogênio muscular e, conforme as reservas musculares forem depletadas, há o aumento da utilização da glicose sanguínea, captada pelo tecido muscular.

No pós-exercício, a captação de glicose pelo músculo não é para a utilização como fonte de energia, mas para a reposição do glicogênio muscular. Aliás, no simples processo de estocar glicose no músculo como glicogênio, há também gasto de energia (por isso, mesmo ingerindo glicose pós-exercício, esse é um dos inúmeros motivos para o gasto energético mais alto após exercícios de alta intensidade). Em exercícios com intensidade em que a glicose é utilizada de forma aeróbica (entre 5 e 20 minutos máximos), ela advém principalmente da corrente sanguínea, captadas pelas fibras oxidativas. 

A repleção do glicogênio muscular é dividida em duas fases:

Primeira fase
Corresponde aos 45 a 60 minutos pós-exercício. Tanto a permeabilidade da célula muscular quanto a atividade da enzima glicogênio sintetase (enzima que atua na ressíntese do glicogênio muscular) encontram-se elevadas, assim a ressíntese do glicogênio ocorre rapidamente (12 a 30 mmol/L/h). Essa fase deve-se iniciar logo após o término do exercício, pelos seguintes motivos:
- fluxo sanguíneo aumentado, facilitando a chegada de nutrientes para a célula muscular;
- os receptores celulares de insulina estão mais sensíveis, promovendo maior influxo de glicose e síntese de glicogênio;
- o número de transportadores de glicose que se ligam à insulina no tecido muscular (Glut4) permanecem translocados para a membrana por 4 horas após o término do exercício, promovendo maior captação de glicose  (e esse é um dos maiores benefícios do exercício para diabéticos tipo II);
- a enzima glicogênio sintetase (que atua na síntese de glicogênio) encontra-se com sua atividade aumentada por 2 horas após o término do exercício.
Nessa fase, o índice glicêmico dos alimentos ingeridos pode ser um pouco mais alto. Como nessa fase, a captação de glicose pelo tecido muscular é alta, ele é capaz de utilizar uma quantidade maior de glicose num espaço de tempo menor.


Segunda Fase
A captação de glicose é bem mais lenta (aproximadamente 3 mmol/L/h), é dependente de insulina e prossegue até que a concentração de glicogênio muscular esteja próxima dos valores normais (geralmente, dentro de 24 horas). Essa fase, portanto, apresenta um aumento da ação da insulina. Por isso, muito cuidado com o índice glicêmico dos carboidratos nessa fase. Uma vez que uma grande quantidade de carboidratos entrando na corrente sanguínea num curto espaço de tempo (alimentos com índice glicêmico alto) pode ser maior que capacidade de captação pelo tecido muscular, esse excesso, é armazenado em forma de gordura (a insulina estimula a síntese de glicogênio muscular, mas também estimula a lipogênese - síntese de triglicerídeos). 

De qualquer forma, consulte seu nutricionista e/ou nutrólogo. Somente eles serão capazes de instruir qual a quantidade exata e o índice glicêmico dos alimentos apropriados para seu objetivo, seja aumento de peso e massa muscular, seja emagrecimento. Entenderam a importância de consultar os profissionais, cada um em sua área para atuação em conjunto? Você pode ter como objetivo emagrecer, fazer um treino excelente, mas se ingerir algum alimento com determinado índice glicêmico na hora errada, pode atrapalhar seu objetivo. Ou até pode ingerir um alimento com índice glicêmico apropriado, mas com a carga glicêmica alta (que mede não só a velocidade de digestão em glicose, mas a quantidade de carboidratos em cada alimento) pode igualmente atrapalhar seus objetivos.

Referência

Filho, Durval RIbas; Suen, Vivian Marques Miguel. Tratato de Nutrologia. Editora Manole, 2013.

domingo, 8 de novembro de 2015

Crossover - vídeo

Vejo muita gente realizando esse exercício estendendo os cotovelos. Isso você pode chamar de supino do cabo ou outra coisa parecida com isso. Crossover e crucifixo são exercícios para isolar o máximo possível o peitoral, sem ação do tríceps braquial. Pode-se flexionar um pouco os cotovelos, mas os mantenham na mesma posição durante a execução do movimento.